【C++】AVL树的模拟实现

目录

一、AVL树的概念:

二、AVL树的模拟实现:

1、定义树节点:

2、AVL树的插入操作:

3、AVL树的旋转操作:

LL型:

RR型:

LR型:

RL型:

4、AVL树的其他功能:

1、遍历:

2、查找:

3、查询高度:

4、判平衡:

三、完整代码:

代码测试:

四、AVL树的总结:

关于AVL树节点的删除:

AVL树的优缺点:


一、AVL树的概念:

        在前面二叉搜索树中我们讲到过,在进行查找操作时:理想状态下只需搜索高度次即可完成查找,也就是时间复杂度O(logn) 但是如果表中数据本来就是有序或者接近有序的话,此时的二叉搜索树就会退化成单支树,就相当于在顺序表中搜索元素,效率就会变得非常低下O(n),如图:

为了解决这个问题,此时就“诞生”了AVL树,AVL树的特性就是:

  • 它的左子树和右子树的高度之差的绝对值不能超过 1 。
  • 它的左右子树也都是AVL树。

左右子树的高度差也被简称为平衡因子,那么怎么更新平衡因子呢?

以下设定为新插入节点为cur,cur指向的父节点为parent。

1、设置每个新插入的节点的平衡因子为0。

2、当插入节点cur时,如果是在parent节点的左边插入,那么parent节点的平衡因子-1,如果是在parent的右边插入,则parent的平衡因子+1。

3、更新完平衡因子后如果parent的平衡因子为2或-2时就违反了AVL树的规则(左右子树的高度差的绝对值不超过 1),此时就要进行旋转操作,至于旋转操作等到后面实现的时候再讲。

4、如果没有违反规则,那么就看一下parent的平衡因子否等于 0 ,(因为平衡因子只有-1、0、1三种情况),如果等于则结束并完成了插入操作,如果不等于则要继续往上更新,就要检查一下parent的父节点的平衡因子是否违法了规则以此反复,也就是cur变成parent,parent变成parent的父节点。

下面看一下一个AVL树图(每个节点的平衡因子用红字标注):

        此时我们可以看到,虽然数据有序,但是该树并没有退化成单支树,而是一颗AVL树,它的高度是平衡的,保持在O(logn),此时的搜索效率就非常高了。

二、AVL树的模拟实现:

1、定义树节点:

对于AVL树的节点,我们可以使用一个三叉链表来控制父节点与左右孩子节点的链接,然后将每一个新插入节点的平衡因子_bf置为零。

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;    // 左孩子
	AVLTreeNode<K, V>* _right;   // 右孩子
	AVLTreeNode<K, V>* _parent;  // 父节点
	pair<K, V> _kv; // <key, value> 键值对

	int _bf; // 平衡因子

    // 节点的构造函数
	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}

};

2、AVL树的插入操作:

对于AVL树的插入,如果插入节点后并没有违反规则(也就是导致有节点的平衡因子为2 / -2),则直接插入结束,如果说违反了规则那么树就会失衡,需要进行旋转操作,失衡情况有如下四种:

(下面表示:红色节点为插入节点cur,绿色节点为插入节点的父节点parent,黄色节点为父节点的父节点grandfather。平衡因子为2 / -2 统称为失衡节点)

将以上情况转换成代码形式如下:

// 插入删除效率其实就是查找效率logN
bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr) // 如果树为空,那么插入节点就是根节点
	{
		_root = new Node(kv);
		return true;
	}

	// 设置插入节点与其父节点
	Node* parent = nullptr;
	Node* cur = _root;

	while (cur)// 将cur节点遍历到空位置(也就是插入位置)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else // cur->_kv.first == kv.first 
		{
			return false; // 插入重复值不做处理
		}
	}

	// 更新cur节点是parent的左节点还是右节点
	cur = new Node(kv);
	if (parent->_kv.first < kv.first) { parent->_right = cur; }
	else { parent->_left = cur; }
	cur->_parent = parent;

	// 更新平衡因子直到为0或者到根节点
	while (parent)
	{
		if (cur == parent->_left) { parent->_bf--; }
		else { parent->_bf++; }

		// 如果平衡因子为 0 则证明当前平衡
		if (parent->_bf == 0) { break; }

		// 如果平衡因子为1 / -1则继续往上更新
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			cur = parent;
			parent = parent->_parent;
		}

		// 平衡因子为 2 / -2,判别是四种情况的哪一种,然后根据情况进行旋转操作
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			if (parent->_bf == -2 && cur->_bf == -1) // LL型
			{
				RotateR(parent);
			}
			else if (parent->_bf == 2 && cur->_bf == 1)// RR型
			{
				RotateL(parent);
			}
			else if (parent->_bf == -2 && cur->_bf == 1) // LR型
			{
				RotateLR(parent);
			}
			else if (parent->_bf == 2 && cur->_bf == -1) // RL型
			{
				RotateRL(parent);
			}
			break;
		}

		// 正常来讲就只有以上情况,如果平衡因子不在 [-2 ~ 2]的区间内就证明有问题,直接在这做个保险
		else
		{
			assert(false);
		}
	}
	return true;
}

3、AVL树的旋转操作:

注意:如下函数的参数传入的是失衡节点,也就是parent参数不是插入节点的父节点,而直接是失衡节点,请注意这两者的不同!!!

LL型:

LL型失衡,就是对失衡节点进行右单旋操作:

void RotateR(Node* parent)
{
	// 记录旋转点位置,旋转点也就是失衡节点的左孩子
	Node* subL = parent->_left;

	// 旋转点右孩子位置
	Node* subLR = subL->_right;

	// 冲突右孩变左孩
	parent->_left = subLR;

	// 如果这个节点存在,则将它的父节点设置为失衡节点
	if (subLR)
		subLR->_parent = parent;

	// 将失衡节点设置为旋转点的右孩子
	subL->_right = parent;

	// 记录失衡节点的父节点,要将旋转点的父节点设置为ppNode,但如果失衡节点为根节点,则ppNode为空
	Node* ppNode = parent->_parent;
	parent->_parent = subL;

	// 如果失衡节点是根节点,则将根节点设置为旋转点
	if (parent == _root)
	{
		_root = subL;
		_root->_parent = nullptr;
	}
	else // 失衡节点不是根节点,则更新ppNode的关系
	{
		if (ppNode->_left == parent)
		{
			ppNode->_left = subL;
		}
		else
		{
			ppNode->_right = subL;
		}

		subL->_parent = ppNode;
	}

	// 将平衡因子置为 0
	parent->_bf = subL->_bf = 0;
}

RR型:

RR型失衡,就是对失衡节点进行左单旋操作:

void RotateL(Node* parent)
{
	// 记录旋转点位置,旋转点也就是失衡节点的右孩子
	Node* subR = parent->_right;

	// 旋转点左孩子位置
	Node* subRL = subR->_left;

	// 冲突左孩变右孩
	parent->_right = subRL;

	// 如果这个节点存在,则将它的父节点设置为失衡节点
	if (subRL)
		subRL->_parent = parent;

	// 将失衡节点设置为旋转点的左孩子
	subR->_left = parent;

	// 记录失衡节点的父节点,要将旋转点的父节点设置为ppNode,但如果失衡节点为根节点,则ppNode为空
	Node* ppNode = parent->_parent;

	parent->_parent = subR;

	// 如果失衡节点是根节点,则将根节点设置为旋转点
	if (parent == _root)
	{
		_root = subR;
		_root->_parent = nullptr;
	}
	else // // 失衡节点不是根节点,则更新旋转点与ppNode的关系
	{
		if (ppNode->_right == parent)
		{
			ppNode->_right = subR;
		}
		else
		{
			ppNode->_left = subR;
		}
		subR->_parent = ppNode;
	}

	// 将平衡因子置为 0
	parent->_bf = subR->_bf = 0;
}

LR型:

LR型失衡,就是对失衡节点的左孩子进行左单旋操作,再对失衡节点进行右单旋操作(完成操作后请注意参与旋转的节点的平衡因子的更新,并不一定说平衡因子为 0):

上面的图画的都是简单版本,实际上还有两种情况注意看红色节点

        以上两种情况均属于LR型旋转,但是我们可以看到,参与旋转的三个有颜色的节点旋转完之后并不是全部的平衡因子都会归零红色节点的平衡因子会影响到绿色和黄色节点的平衡因子,这是因为旋转完之后红色节点的左边会变成黄色节点的右边,红色节点的右边会变成绿色节点的左边,因此我们要特别记录下这个红色节点的平衡因子,在进行完旋转后要更新绿色 / 黄色节点的平衡因子:

void RotateLR(Node* parent)
	{
		// 失衡节点的左孩子节点
		Node* subL = parent->_left;

		// 左孩子节点的右孩子节点
		Node* subLR = subL->_right;

		// 记录subLR(红色节点)的平衡因子
		int bf = subLR->_bf;

		// 先左单旋失衡节点的左孩子(subL),再有单旋失衡节点
		RotateL(parent->_left);
		RotateR(parent);

		// 根据subLR的平衡因子更新参与旋转节点(绿色 / 黄色节点)的平衡因子
		// 这里注释掉的最好写上,不写也没关系,因为对应左旋和右旋函数里是写了将全部平衡因子更新为0的
		// 写上是为了提高可读性和降低与左右旋函数的依赖性
		if (bf == -1)
		{
			/*subLR->_bf = 0;
			subL->_bf = 0;*/

			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			/*parent->_bf = 0;
			subLR->_bf = 0;*/

			subL->_bf = -1;
		}
		else if (bf == 0)
		{
			/*parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;*/
		}
		else
		{
			assert(false); // 除这三种情况外没有其他情况
		}
	}

RL型:

RL型失衡,就是对失衡节点的右孩子进行右单旋操作,再对失衡节点进行左单旋操作(完成操作后请注意参与旋转的节点的平衡因子的更新,并不一定说平衡因子为 0):

跟上面LR型介绍的情况应用,还有两种情况,其实本质上是一样的,只不过换了一种方向,这里就只给出图了,就不再重复介绍了。

这里也是一样要注意红色节点的平衡因子对黄色 / 绿色节点的影响

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	int bf = subRL->_bf;

	RotateR(parent->_right);
	RotateL(parent);

	if (bf == 1)
	{
		/*subR->_bf = 0;
		subRL->_bf = 0;*/

		parent->_bf = -1;
	}
	else if (bf == -1)
	{
		/*parent->_bf = 0;
		subRL->_bf = 0;*/

		subR->_bf = 1;
	}
	else if (bf == 0)
	{
		/*parent->_bf = 0;
		subR->_bf = 0;
		subRL->_bf = 0;*/
	}
	else
	{
		assert(false); // 除这三种情况外没有其他情况
	}
}

4、AVL树的其他功能:

1、遍历:

直接使用中序遍历:

void InOrder() { _InOrder(_root); cout << endl; }

void _InOrder(Node* root)
{
	if (root == nullptr) { return; }
	_InOrder(root->_left);
	cout << root->_kv.first << " : " << root->_kv.second << endl;
	_InOrder(root->_right);
}

2、查找:

Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < key)
		{
			cur = cur->_right;
		}
		else if (cur->_kv.first > key)
		{
			cur = cur->_left;
		}
		else
		{
			return cur;
		}
	}
	return nullptr;
}

3、查询高度:

就是利用递归返回左右子树的最大值加一即可:

int Height() { return _Height(_root); }

int _Height(Node* root)
{
	if (root == nullptr) return 0;

	return max(_Height(root->_left), _Height(root->_right)) + 1;
}

4、判平衡:

bool IsBalance(){ return _IsBalance(_root); }

bool _IsBalance(Node* root)
{
	if (root == nullptr) { return true; }

	int leftHeight = _Height(root->_left);
	int rightHeight = _Height(root->_right);

	// 看左树减去右数的高度的绝对值是否大于1,如果是则返回该值
	if (abs(leftHeight - rightHeight) >= 2)
	{
		cout << root->_kv.first << endl;
		return false;
	}

	// 顺便检查平衡因子
	if (rightHeight - leftHeight != root->_bf)
	{
		cout << root->_kv.first << endl;
		return false;
	}

	return _IsBalance(root->_left) && _IsBalance(root->_right);
}

三、完整代码:

#include<iostream>
#include <assert.h>

using namespace std;

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;

	int _bf; // 平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}

};

template<class K, class V>
class AVLTree
{
public:
	typedef AVLTreeNode<K, V> Node;

	// 插入删除效率其实就是查找效率logN
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr) // 如果树为空,那么插入节点就是根节点
		{
			_root = new Node(kv);
			return true;
		}

		// 设置插入节点与其父节点
		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)// 将cur节点遍历到空位置(也就是插入位置)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else // cur->_kv.first == kv.first 
			{
				return false; // 插入重复值不做处理
			}
		}

		// 更新cur节点是parent的左节点还是右节点
		cur = new Node(kv);
		if (parent->_kv.first < kv.first) { parent->_right = cur; }
		else { parent->_left = cur; }
		cur->_parent = parent;

		// 更新平衡因子直到为0或者到根节点
		while (parent)
		{
			if (cur == parent->_left) { parent->_bf--; }
			else { parent->_bf++; }

			// 如果平衡因子为 0 则证明当前平衡
			if (parent->_bf == 0) { break; }

			// 如果平衡因子为1 / -1则继续往上更新
			else if (parent->_bf == 1 || parent->_bf == -1) 
			{
				cur = parent;
				parent = parent->_parent;
			}

			// 平衡因子为 2 / -2,判别是四种情况的哪一种,然后根据情况进行旋转操作
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				if (parent->_bf == -2 && cur->_bf == -1) // LL型
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1)// RR型
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1) // LR型
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1) // RL型
				{
					RotateRL(parent);
				}
				break;
			}

			// 正常来讲就只有以上情况,如果平衡因子不在 [-2 ~ 2]的区间内就证明有问题,直接在这做个保险
			else
			{
				assert(false);
			}
		}
		return true;
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return nullptr;
	}

	void RotateR(Node* parent)
	{
		// 记录旋转点位置,旋转点也就是失衡节点的左孩子
		Node* subL = parent->_left;

		// 旋转点右孩子位置
		Node* subLR = subL->_right;

		// 冲突右孩变左孩
		parent->_left = subLR;
		
		// 如果这个节点存在,则将它的父节点设置为失衡节点
		if (subLR)
			subLR->_parent = parent;

		// 将失衡节点设置为旋转点的右孩子
		subL->_right = parent;

		// 记录失衡节点的父节点,要将旋转点的父节点设置为ppNode,但如果失衡节点为根节点,则ppNode为空
		Node* ppNode = parent->_parent;
		parent->_parent = subL;

		// 如果失衡节点是根节点,则将根节点设置为旋转点
		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else // 失衡节点不是根节点,则更新旋转点与ppNode的关系
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}

		// 将平衡因子置为 0
		parent->_bf = subL->_bf = 0;
	}

	void RotateL(Node* parent)
	{
		// 记录旋转点位置,旋转点也就是失衡节点的右孩子
		Node* subR = parent->_right;

		// 旋转点左孩子位置
		Node* subRL = subR->_left;

		// 冲突左孩变右孩
		parent->_right = subRL;
		
		// 如果这个节点存在,则将它的父节点设置为失衡节点
		if (subRL)
			subRL->_parent = parent;

		// 将失衡节点设置为旋转点的左孩子
		subR->_left = parent;

		// 记录失衡节点的父节点,要将旋转点的父节点设置为ppNode,但如果失衡节点为根节点,则ppNode为空
		Node* ppNode = parent->_parent;

		parent->_parent = subR;

		// 如果失衡节点是根节点,则将根节点设置为旋转点
		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else // // 失衡节点不是根节点,则更新旋转点与ppNode的关系
		{
			if (ppNode->_right == parent)
			{
				ppNode->_right = subR;
			}
			else
			{
				ppNode->_left = subR;
			}
			subR->_parent = ppNode;
		}

		// 将平衡因子置为 0
		parent->_bf = subR->_bf = 0;
	}

	void RotateLR(Node* parent)
	{
		// 失衡节点的左孩子节点
		Node* subL = parent->_left;

		// 左孩子节点的右孩子节点
		Node* subLR = subL->_right;

		// 记录subLR(红色节点)的平衡因子
		int bf = subLR->_bf;

		// 先左单旋失衡节点的左孩子(subL),再有单旋失衡节点
		RotateL(parent->_left);
		RotateR(parent);

		// 根据subLR的平衡因子更新参与旋转节点(绿色 / 黄色节点)的平衡因子
		// 这里注释掉的最好写上,不写也没关系,因为对应左旋和右旋函数里是写了将全部平衡因子更新为0的
		// 写上是为了提高可读性和降低与左右旋函数的依赖性
		if (bf == -1)
		{
			/*subLR->_bf = 0;
			subL->_bf = 0;*/

			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			/*parent->_bf = 0;
			subLR->_bf = 0;*/

			subL->_bf = -1;
		}
		else if (bf == 0)
		{
			/*parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;*/
		}
		else
		{
			assert(false); // 除这三种情况外没有其他情况
		}
	}

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 1)
		{
			/*subR->_bf = 0;
			subRL->_bf = 0;*/

			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			/*parent->_bf = 0;
			subRL->_bf = 0;*/

			subR->_bf = 1;
		}
		else if (bf == 0)
		{
			/*parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;*/
		}
		else
		{
			assert(false); // 除这三种情况外没有其他情况
		}
	}




	void InOrder() { _InOrder(_root); cout << endl; }
	bool IsBalance(){ return _IsBalance(_root); }
	int Height() { return _Height(_root); }
	int Size() { return _Size(_root); }

private:
	void _InOrder(Node* root)
	{
		if (root == nullptr) { return; }
		_InOrder(root->_left);
		cout << root->_kv.first << " : " << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	int _Height(Node* root)
	{
		if (root == nullptr) return 0;
		
		return max(_Height(root->_left), _Height(root->_right)) + 1;
	}

	bool _IsBalance(Node* root)
	{
		if (root == nullptr) { return true; }

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		// 看左树减去右数的高度的绝对值是否大于1,如果是则返回该值
		if (abs(leftHeight - rightHeight) >= 2) 
		{ 
			cout << root->_kv.first << endl;
			return false;
		}

		// 顺便检查平衡因子
		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << endl;
			return false;
		}

		return _IsBalance(root->_left) && _IsBalance(root->_right);
	}

	int _Size(Node* root)
	{
		return root == nullptr ? 0 : _Size(root->_left) + _Size(root->_right) + 1;
	}
private:
	Node* _root = nullptr;
};

代码测试:

(返回1代表树是平衡的)

四、AVL树的总结:

关于AVL树节点的删除:

        对于平衡二叉树的删除,就和二叉搜索树的删除是一样的,但是要沿着祖先节点依次向上检查和调整,删除后可能不止一次进行调整。

AVL树的优缺点:

        从上述我们知道,AVL树会严格的控制树的平衡,这会使得AVL树的查询效率非常的高,但是这样的代价就是整棵树的维护成本会很高,因为它在插入或删除节点后需要进行平衡调整。这种平衡调整操作可能会涉及多个节点的旋转和重新连接,在大量插入或删除操作的情况下,这种维护成本会变得相当显著。

        AVL树的优点很明显但是在实践中的大多数场景我们更倾向于用红黑树来代替AVL树,比如库中的 set 和 map,牺牲一些高度来换取插入删除的效率,红黑树放在下一章节讲解。

  • 17
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值