题目:
Caima 给你了所有 [a,b] 范围内的整数。一开始每个整数都属于各自的集合。每次你需要选择两个属于不同集合的整数,如果这两个整数拥有大于等于 pp 的公共质因数,那么把它们所在的集合合并。重复如上操作,直到没有可以合并的集合为止。现在 Caima 想知道,最后有多少个集合。
思路:
1.解析题意:
将[a,b] 范围内的整数作为点,如果满足题给条件,a,b将装入了一个集合等同于把a,b放进一个连通分支里。在一个集合里的点意味着在一个连通分支上的点,最后求解图中连通分支的数量。
2.整体思路:
(1)判断两点是否关联;
(2)将关联的两点放进一个连通分支里(或者说,将a,b,所在连通分支合并);
(3)最后统计图中连通分支的个数;
3.具体思路:
(1)
问:a,b两点关联的充要条件是什么?
答:a,b有公共质因数,且质因数的范围是[pp,b]。这意味着我们的操作基于区间内的质因数(AT:这里 提前打出素数表 会比 将区间内所有数进行判断质数的操作 来的高效!),不妨找到所有符合该条件的质因数,将所有由于该质因数相连的a,b,放进一个连通分支。
(2)
问:如何将a,b放进一个连通分支?(或者说,如何将a所在的连通分支和b所在的连通分支合并)
答:这里用到并查集的知识,分别找到a,b两点的源头r1,r2,并将r1,r2连接,即可。
(3)
问:如何统计图中连通分支的个数呢?
答:这里必须提一句,有些小伙伴(比如我)最开始直观的想法就是遍历所有点x,寻找x所在连通分支的源头,由此统计不同的连通分支的个数。然而这个方法太低效了,与其遍历所有点找源头,不如直接找作为源头的点。
代码展示: