武忠祥老师每日一题||定积分基础训练(五)

∫ − π π ∣ x ∣ ( x 3 + sin ⁡ 2 x ) cos ⁡ 2 x   d x \int_{-\pi}^{\pi}\lvert x \rvert(x^3+\sin^2x)\cos^2x\,{\rm d}x ππx(x3+sin2x)cos2xdx

分析:
首先,注意到积分上下限关于原点对称
这个函数整体上没有奇偶性,所以分部开来看两项
第一项为奇函数,第二项为偶函数
根据偶倍奇零

原式 = ∫ − π π ∣ x ∣ sin ⁡ x 2 cos ⁡ 2 x   d x 原式=\int_{-\pi}^{\pi} \lvert x \rvert \sin x^2\cos^2x\,{\rm d}x 原式=ππxsinx2cos2xdx
= 2 ∫ 0 π ∣ x ∣ sin ⁡ 2 x c o s 2 x   d x =2\int_{0}^{\pi}\lvert x \rvert \sin^2x cos^2x \,{\rm d}x =20πxsin2xcos2xdx
= 2 ∫ 0 π x sin ⁡ x 2 c o s 2 x   d x =2\int_{0}^{\pi}x\sin x^2cos^2x\,{\rm d}x =20πxsinx2cos2xdx


∫ 0 π x f ( sin ⁡ x )   d x = π 2 ∫ 0 π f ( sin ⁡ x )   d x \int_{0}^{\pi}xf(\sin x)\,{\rm d}x=\frac{\pi}{2}\int_{0}^{\pi}f(\sin x)\,{\rm d}x 0πxf(sinx)dx=2π0πf(sinx)dx


= 2 × π 2 ∫ 0 π sin ⁡ 2 x cos ⁡ 2 x   d x =2\times \frac{\pi}{2}\int_{0}^{\pi}\sin^2x \cos^2x\,{\rm d}x =2×2π0πsin2xcos2xdx
= π ∫ 0 π sin ⁡ 2 x cos ⁡ 2 x   d x =\pi\int_{0}^{\pi}\sin^2x\cos^2x\,{\rm d}x =π0πsin2xcos2xdx
= 2 π ∫ 0 π 2 sin ⁡ 2 x ( 1 − s i n 2 x )   d x =2\pi\int_{0}^{\frac{\pi}{2}}\sin^2x(1-sin^2x)\,{\rm d}x =2π02πsin2x(1sin2x)dx


∫ 0 π 2 sin ⁡ n x   d x \int_{0}^{\frac{\pi}{2}}\sin^nx\,{\rm d}x 02πsinnxdx
= n − 1 n × n − 3 n − 2 × n − 5 n − 4 … × 1 2 × π 2 ( n 为偶数 ) =\frac{n-1}{n}\times \frac{n-3}{n-2}\times \frac{n-5}{n-4} …\times \frac{1}{2}\times \frac{\pi}{2}(n为偶数) =nn1×n2n3×n4n5×21×2π(n为偶数)
= n − 1 n × n − 3 n − 2 × n − 5 n − 4 … × 2 3 ( n 为奇数 ) =\frac{n-1}{n}\times \frac{n-3}{n-2} \times \frac{n-5}{n-4}…\times \frac{2}{3}(n为奇数) =nn1×n2n3×n4n5×32(n为奇数)


= 2 π ( 1 2 × π 2 − 3 4 × 1 2 × π 2 ) =2\pi(\frac{1}{2}\times \frac{\pi}{2}-\frac{3}{4}\times \frac{1}{2}\times \frac{\pi}{2}) =2π(21×2π43×21×2π)
= 2 π × 1 4 × π 4 =2\pi\times\frac{1}{4}\times\frac{\pi}{4} =2π×41×4π
= π 2 8 =\frac{{\pi}^2}{8} =8π2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

釉色清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值