武忠祥老师每日一题||定积分基础训练(九)

∫ 0 1 ln ⁡ ( 1 + x ) ( 2 − x ) 2   d x \int_{0}^{1}\frac{\ln (1+x)}{(2-x)^2}\,{\rm d}x 01(2x)2ln(1+x)dx

根据题目的特点,有对数函数、有理函数,两种不同类型的函数相乘,对此,应用分部积分法。
当出现对数后,使用分部积分法时,应将除对数函数之外的部分凑到d后面去。


原式 = ∫ 0 1 ln ⁡ ( 1 + x )   d 1 2 − x 原式=\int_{0}^{1}\ln(1+x)\,{\rm d}{\frac{1}{2-x}} 原式=01ln(1+x)d2x1
= ln ⁡ ( 1 + x ) 2 − x ∣ 0 1 − ∫ 0 1 1 2 − x   d ( ln ⁡ ( 1 + x ) ) =\frac{\ln (1+x)}{2-x}|_{0}^{1}-\int_{0}^{1}\frac{1}{2-x}\,{\rm d}{(\ln (1+x))} =2xln(1+x)01012x1d(ln(1+x))
= ln ⁡ 2 + ∫ 0 1 1 ( x − 2 ) ( x + 1 )   d x =\ln2+\int_{0}^{1}\frac{1}{(x-2)(x+1)}\,{\rm d}x =ln2+01(x2)(x+1)1dx
= ln ⁡ 2 + 1 3 ln ⁡ ∣ x − 2 x + 1 ∣ ∣ 0 1 =\ln2+\frac{1}{3}\ln \lvert \frac{x-2}{x+1} \rvert|_{0}^{1} =ln2+31lnx+1x201
= ln ⁡ 2 + 1 3 ( − ln ⁡ 2 − ln ⁡ 2 ) =\ln 2+\frac{1}{3}(-\ln2 -\ln2) =ln2+31(ln2ln2)
= 1 3 ln ⁡ 2 =\frac{1}{3}\ln 2 =31ln2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

釉色清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值