二叉树
- 二叉树的特点
- 二叉树中,任意一个节点的度要小于等于2
- 节点:在树结构中,每一个元素称为节点
- 度:每一个节点的子节点数量称为度
- 二叉树中,任意一个节点的度要小于等于2
二叉查找树
- 二叉查找树的特点
- 二叉查找树,又称二叉排序树或者二叉搜索树
- 每一个节点上最多有两个子节点
- 左子树上所有节点的值都小于根节点的值
- 右子树上所有节点的值都大于根节点的值
二叉树遍历
-
前序遍历
- 从根节点开始,按照当前节点、左子节点、右子节点的顺序遍历
- 遍历结果:20 18 16 19 23 22 24
-
中序遍历
- 从最左边的子节点开始,然后按照左子节点、当前节点、右子节点的顺序遍历
- 遍历结果:16 18 19 20 22 23 24
-
后续遍历
- 从最左边的子节点开始,然后按照左子节点、右子节点、当前节点的顺序遍历
- 遍历结果:16 19 18 22 24 23 20
-
层序遍历
- 从根节点一层一层的遍历
- 遍历结果:20 18 23 16 19 22 24
平衡二叉树
-
平衡二叉树的特点
- 二叉树左右两个子树的高度差不超过1
- 任意节点的左右两个子树都是一颗平衡二叉树
-
规则:任意节点左右子树高度差不超过1
-
自旋(以左旋为例子)
-
确定支点:从添加的节点开始,不断的往父节点找不平衡的节点
-
把支点左旋降级,变成左子结点
-
晋升原来的右子节点
-
-
平衡二叉树需要旋转的四种情况
- 左左:一次右旋
- 左右:先局部左旋,再整体右旋
- 右右:一次左旋
- 右左:先局部右旋,再整体左旋
红黑树
-
概念
- 红黑树是一种自平衡的二叉查找树,是计算机科学中用到的一种数据结构
- 1972年出现,当时被称为平衡二叉B树。1978年被修改为如今的“红黑树”
- 它是一种特殊的二叉查找树,红黑树的每一个节点上都有存储位表示节点的颜色
- 每一个节点可以是红或者黑,红黑树不是高度平衡点,它的平衡是通过“红黑规则”进行实现的
-
红黑规则
- 每一个节点要么是红色要么是黑色
- 根节点必须是黑色
- 如果一个节点没有子节点或者父节点,则该节点相应的指针属性值为Nil,这些Nil视为叶节点,每个叶节点(Nil)是黑色的
- 如果某一个节点是红色,那么它的子节点必须是黑色(不能出现两个红色节点相连的情况)
- 对每一个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点
-
添加节点规则
-
红黑树在添加节点的时候,添加的节点默认是红色的
-