dw吃瓜task2

本文介绍了线性模型的基本形式,强调了其可解释性,探讨了线性回归的最小二乘法求解方法,扩展至多元和对数线性回归,以及对数几率回归在二分类问题中的应用。此外,还提及了线性判别分析(LDA)用于样本分类的方法。
摘要由CSDN通过智能技术生成

线性模型

1 基本形式

f\left ( x \right )=\omega _{1}x_{1}+\omega _{2}x_{2}+...+\omega _{d}x_{d}+b;

向量形式:

f\left ( x \right )=\omega ^T{}x +b;

优点:具有很强的可解释性(可理解性)

即每个因素前的系数可表示该因素的重要性。

2 线性回归

给定数据集

D=\left \{ \left ( \chi _{1} ,y_{1}\right ),( \chi _{2} ,y_{2}\right ),...,( \chi _{m} ,y_{m}) \},其中\chi _{i}=\left \{ x_{i1} ,x_{i2,...,x_{id}}\right \},y\in R

方便起见,假设,\chi_{i}中仅含一个数据,则线性回归试图学到的就是

f\left ( x_{i}\right )= \omega x_{i}+b   使得f\left ( x_{i} \right )\simeq y_{i}

\omega和b时,用均方误差最小化来进行模型求解,即“最小二乘法”

下式即为令均方差最小化

\left ( \omega ^{*},b^{*} \right )= argmin_{(\omega ,b)}\sum_{i=1}^{m}\left ( f(x_{i})-y_{i} \right )^{2} =argmin_{(\omega ,b)}\sum_{i=1}^{m}\left ( y_{i}-\omega x_{i}-b\right )^{2}

求解\omega和b使E_{\left ( \omega ,b\right )}=\sum_{i=1}^{m}\left ( y_{i}-\omega x_{i}-b \right )^{2}最小化,称为最小二乘参数估计。分别将E_{\left ( \omega ,b \right )}\omega和b求偏导,可得

\omega = \frac{\sum_{i=1}^{m}y_{i}(x_{i}-\overline{x})}{\sum_{i=1}^{m}x_{i}^{2}-\frac{1}{m}\left ( \sum_{i=1}^{m}x_{i} \right )^{2}}          b= \frac{1}{m}\sum_{i=1}^{m}(y_{i}-\omega x_{i})

一般地,需要建立的模型都是“多元线性回归”,即其中x_{i}如同开篇中提到的一样,含有多个元素

这种模型解法与上述方法一致,也为最小二乘法,只是将其中变量变为矩阵形式。需要注意,由于实际解题过程中,可能会因为矩阵不是满秩阵导致解出的多个\omega _{i}都可使均方误差最小化,这时,选取的最优解需要依靠算法的归纳偏好决定。

虽然线性回归形式简单,但它却有丰富的变化,如对数线性回归模型;

lny=\omega ^{T}x+b

它的目的是使e^{\omega ^{T}x+b}逼近y,虽然本质上仍未线性回归,但实质上已是在求取输入空间到输出空间的非线性函数映射。其图示如下 

图1  对数线性回归示意图

更一般地,考虑单调可微函数g\left ( \cdot \right ),令

y=g^{-1}\left ( \omega ^{T}x+b\right )

得到“广义线性模型”,其中g\left ( \cdot \right )为“联系函数”,显然对数线性回归是广义线性回归在g\left ( \cdot \right )=ln\left ( \cdot \right )时的特例

3 对数几率回归

考虑到二分类问题,其输出标记y\in \left \{ 0,1 \right \},而预测值z= \omega ^{T}x+b却是实值。需将实值转换为0/1值。最理想的是“单位跃迁函数”

               0,z<0;

y=            0.5,z=0;

               1,z>0,

其预测临界值判断如下图

 图2  单位跃迁函数与对数几率函数

如图2,单位阶跃函数不连续,因此需要找到在一定程度上近似单位阶跃函数的“替代函数”,并希望它单调可微。对数几率函数用的是一个常用的替代函数:

y= \frac{1}{1+e^{-z}}

将z带入,得

y= \frac{1}{1+e^{-(\omega ^{T}x+b)}}

ln\frac{y}{1-y}=\omega ^{T}x+b

若将y记为样本x作为正例的可能性,则1-y即为x作为反例的可能性,所谓的“几率”则为\frac{y}{1-y},取对数则为“对数几率”,ln\frac{y}{1-y}

需注意,虽然这种模型名为“回归”,但它却是一种分类学习方法。优点:不仅预测出类别,还得到近似概率。

4 线性判别分析(Linear Discriminant nalys ,简称 LDA)

其核心思维为:设法将所有样例投影在一条直线上,使得同类样例投影点尽可能接近、异类投影点尽可能远离。将需要预测的数据也投影在这条已经得到的线上,根据其相距距离,判断其具体属于哪个类别。示意图如下

图3  LDA二维示意图,“+”,“-”分别代表正例和反例,椭圆表示数据簇的外轮廓,虚线表示投影,红色实心圆和实心三角形分别表示两类样本投影后的中心点.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值