第二次选做题

CINTA第二次选做题

  1. 第三章第九题
#include<stdio.h>

//矩阵乘法,结果在第一个参数
void mul_matrix(int (*matrix1)[2],int (*matrix2)[2]){
    int temp[2][2]={0};
    for(int i=0;i<2;i++){
        for(int j=0;j<2;j++){
            for(int k=0;k<2;k++){
                temp[i][j]+=matrix1[i][k]*matrix2[k][j];
            }
        }
    }
    for(int i=0;i<2;i++){
        for(int j=0;j<2;j++) matrix1[i][j]=temp[i][j];
    }
}
//直男
int get_fibonacii(int n){
    if(n==0||n==1){
        return n;
    }
    int matrix[2][2]={{1,1},{1,0}};
    int temp[2][2]={{1,0},{0,1}};
    int t=0;
    while(n!=1){
        if(n&1==1){
            mul_matrix(temp,matrix);
        }
        n=n/2;
        mul_matrix(matrix,matrix);
    }
    mul_matrix(matrix,temp);
    return matrix[1][0];
}

//非直男
int fibonacii(int n){
    if(n==0||n==1){
        return n;
    }
    else if(n==2){
        return 1;
    }
    else if(!(n&1)){
        return (fibonacii((n/2)+1)+fibonacii((n/2)-1))*fibonacii(n/2);
    }
    else{
        return fibonacii(n/2)*fibonacii(n/2)+fibonacii(n/2+1)*fibonacii(n/2+1);
    }
}

int main(){
    for(int i=0;i<10;i++){
        printf("%d %d\n",get_fibonacii(i),fibonacii(i));
    }
    return 0;
}
  1. 第四章第十四题
  • ( a ) :对于任意素数 p, F ( p ) = ϕ ( 1 ) + ϕ ( p ) = 1 + p − 1 = p F(p)=\phi(1)+\phi(p)=1+p-1=p F(p)=ϕ(1)+ϕ(p)=1+p1=p
  • ( b ) :对于任意素数 p, F ( p 2 ) = ϕ ( 1 ) + ϕ ( p ) + ϕ ( p 2 ) = 1 + p − 1 + p 2 − p = p 2 F(p^2)=\phi(1)+\phi(p)+\phi(p^2)=1+p-1+p^2-p=p^2 F(p2)=ϕ(1)+ϕ(p)+ϕ(p2)=1+p1+p2p=p2
  • ( c ) : 对于任意素数 p, F ( p k ) = ϕ ( 1 ) + ϕ ( p ) + ϕ ( p 2 ) + … … + ϕ ( p k ) = 1 + p − 1 + p 2 − p + p 3 − p 2 + … … + p k − p k − 1 = p k F(p^k)=\phi(1)+\phi(p)+\phi(p^2)+……+\phi(p^k)=1+p-1+p^2-p+p^3-p^2+……+p^k-p^{k-1}=p^k F(pk)=ϕ(1)+ϕ(p)+ϕ(p2)+……+ϕ(pk)=1+p1+p2p+p3p2+……+pkpk1=pk
  • (d ) : 对于任意素数p、q, F ( p q ) = ϕ ( 1 ) + ϕ ( p ) + ϕ ( q ) + ϕ ( p q ) = 1 + p − 1 + q − 1 + ϕ ( p ) ∗ ϕ ( q ) = p + q − 1 + ( p − 1 ) ∗ ( q − 1 ) = p q F(pq)=\phi(1)+\phi(p)+\phi(q)+\phi(pq)=1+p-1+q-1+\phi(p)*\phi(q)=p+q-1+(p-1)*(q-1)=pq F(pq)=ϕ(1)+ϕ(p)+ϕ(q)+ϕ(pq)=1+p1+q1+ϕ(p)ϕ(q)=p+q1+(p1)(q1)=pq
  • (e) : 对于任意数m,n满足 gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 gcd(m,n)=1, 对于任意 d m n ∣ m n , 都能找到 d m ∣ m , d n ∣ n , 其中 d m n = d m ∗ d n 且 g c d ( d m , d n ) = 1 那么 ϕ ( d m n ) = ϕ ( d m ) ∗ ϕ ( d n ) 对于任意d_{mn}|mn,都能找到d_m|m,d_n|n,其中d_{mn}=d_m*d_n且gcd(d_m,d_n)=1那么\phi(d_{mn})=\phi(d_m)*\phi(d_n) 对于任意dmnmn,都能找到dmm,dnn,其中dmn=dmdngcd(dm,dn)=1那么ϕ(dmn)=ϕ(dm)ϕ(dn)因此 F ( m n ) = ϕ ( 1 ) + … + ϕ ( d m n ) + … + ϕ ( m n ) = ( ϕ ( 1 ) + … + ϕ ( d m ) + … ϕ ( m ) ) ∗ ( ϕ ( 1 ) + … + ϕ ( d n ) + … + ϕ ( n ) ) = F ( m ) F ( n ) F(mn)=\phi(1)+…+\phi(d_{mn})+…+\phi(mn)=(\phi(1)+…+\phi(d_m)+…\phi(m))*(\phi(1)+…+\phi(d_n)+…+\phi(n))=F(m)F(n) F(mn)=ϕ(1)++ϕ(dmn)++ϕ(mn)=(ϕ(1)++ϕ(dm)+ϕ(m))(ϕ(1)++ϕ(dn)++ϕ(n))=F(m)F(n) 换言之,对于m中的每个因子都和n中的因子互素,且任意一对这样的乘法组合都不会与其他组合等值
  • (f) : 对于任意数n, F ( n ) = F ( p 0 k 0 p 1 k 1 p 2 k 2 p 3 k 3 … … p t k t ) = p 0 k 0 p 1 k 1 p 2 k 2 p 3 k 3 … … p t k t = n F(n)=F(p_0^{k_0}p_1^{k_1}p_2^{k_2}p_3^{k_3}……p_t^{k_t})=p_0^{k_0}p_1^{k_1}p_2^{k_2}p_3^{k_3}……p_t^{k_t}=n F(n)=F(p0k0p1k1p2k2p3k3……ptkt)=p0k0p1k1p2k2p3k3……ptkt=n 其中对任意的 p m k m 与 p n k n 互素 p_m^{k_m}与p_n^{k_n}互素 pmkmpnkn互素
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值