10.4 Connectivity 连通性
无向图中的通路及连通性
定义1
图G的一个非空点、边交替序列
$$
W=v_0e_1v_1e_2...e_kv_k
$$
称为一条从v_0到v_k的路径(通路),或(v_0,v_k)路径
其中,v_0为W的起点,v_k为W的终点,v_i(1\le i\le k-1)为W的内点,它们都是端点,K为W的路长
注:
若W=v_0e_1v_1e_2...e_kv_k,是一条(v_0,v_k)路径(通路),则W逆转后的W=v_ke_kv_{k-1}e_{k-1}...e_1v_0必为一条(v_k,v_0)路径(通路),记作W^{-1}.
路径W的部分相连项构成的子序列
v_ie_iv_{i+1}...e_jv_j,0\le i\le j\le k
也必构成一条路径,称为W的节
wH和另外一条路径W^`=v_ke_{k+1}v_{k+1}...e_lv_l$衔接在一起得一条新路径,记为$WW^`.
简单图中,路径v_0e_1v_1...e_kv_k可以简单用其顶点序列v_0v_1...v_k表示
定义2
设 W=v_0e_1v_1e_2...e_kv_k为图G中的一条路径,若边序列e_1,e_2,...,e_k互不相同,
则称该路径为迹(简单通路);若点序列v_0,v_1,...,v_k互不相同,则称该路径为路.
定义3
设W=v_0e_1v_1e_2...e_kv_k为图G中的一条路径且k\ge1,如果v_0=v_k,则称该路径
为闭路径(环路Circle),否则称为开路径.
特别地,若W为一条迹,k\ge 1,当V_0=v_k是为闭迹.闭迹也称回路
定义4
设v_0e_1v_1...e_kv_0是一条闭迹,若v_0,..v_{k-1}互不相同
则称该闭迹为圈或k圈,
k为偶(奇)数称为偶(奇)圈
注:
一条路必是一条迹
自环和两条平行边都自称一圈
定理1
若图G中的每个顶点度数至少为2,则G中必含有圈.
定义5
设G是一个图,u,v\in V(G),若存在从u到v的路,则称u,v是相连的或连通的,若G中任意两个点都连通,则称图G是连通的.
注:
图G中顶点之间的连通关系是一个等价关系
根据该关系可将V(G)划分成一些等价类V_1,...V_n,每个V_i导出的子图G(V_i)称为G的一个连通分支
G的连通分支数通常用\omega(G)表示
$$
G是连通的\Longleftrightarrow \omega(G)=1
$$
定义6
设u,v\in V(G),若u,v连通,则称最短(u,v)路的长为u,v距离,记作d(u,v)
当u,v不连通时,认为u,v的距离时\infty
定理2
$$
一个图是二分图\Longleftrightarrow G中不含奇圈
$$
只考虑连通图。对不连通图来说,只需考察每个连通分支,就可以得到结论
定理3
设G是具有n个顶点的简单图,若G有\epsilon条边,\omega个连通分支,则
$$
n-\omega\le\epsilon\le\frac{1}{2}(n-\omega)(n-\omega+1)
$$
设G有n个顶点\omega个分支时,怎么让边最多?
G的一个连通分支是n-\omega+1个点的完全图,其余\omega -1个连通分支均是孤立点
具有n个顶点,n-1条边的连通图称为最小连通图.
有向图中的通路和连通性
有向路径: 一个非空有限点、弧交替序列
$$
W=v_0a_1v_1...a_kv_k
$$
对于i=1,2,...,k,弧a_i的头为v_i,尾为v_{i-1}
有向路径W也经常用它的顶点序列v_0v_1...v_k表示
有向迹,路,回路,圈
存在有向(u,v)路,则称v是从u可达的
若u,v互相可达,则称u,v是双向联通的
若对D中任何两顶点,至少有一顶点可从另一顶点可达,则称D为单向连通图
若D中任何两顶点都是双向连通的,则称D为双向连通图或强连通图
双向连通关系是D的顶点集V上的一个等价关系
双向分支或强连通分支
D强连通\LongleftrightarrowD恰好有一个强连通分支
Theorem
设G是带有相对于顶点顺序v_1,v_2,...,v_n的邻接矩阵A的图(允许有有向边或无向边,带多重边和环)。从v_i到v_j的长度为r的不同通路的数目等于A^r的第(i.j)项,r为正整数。
割点和割边
有时删除一个顶点和它所关联的边,就产生带有比原图更多的连通分支的子图。把这样的顶点称为割点(或节点)。从连通图里删除割点,就产生不连通的子图
同理,把一旦删除就产生有比原图更多的连通分支的子图的边称为割边或桥
Paths and Isomorphism 通路和同构
Idea:
(1) Some other invariants 一些其他的不变量
-
The number and size of connected components 连通分支的数目和大小
-
Path
Two graphs are isomorphic only if they have simple circuits of the same length
只当两图具有相同长度的简单回路时,两图同构。
Two graphs are isomorphic only if they contain paths that go through vertices so that the corresponding vertices in the two graphs have the same degree
应用两图中相应的顶点具有相同的度来判断两图的同构情况
(2) We can also ues paths to find mapping that are potential isomorphisms.
也可以使用路径来找到潜在同构的映射