目录
关系数据库与非关系型数据库
●关系型数据库:
关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。
SQL 语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作。
主流的关系型数据库包括 Oracle、MySQL、SQL Server、Microsoft Access、DB2、PostgreSQL 等。
以上数据库在使用的时候必须先建库建表设计表结构,然后存储数据的时候按表结构去存,如果数据与表结构不匹配就会存储失败。
●非关系型数据库
NoSQL(NoSQL = Not Only SQL ),意思是“不仅仅是 SQL”,是非关系型数据库的总称。
除了主流的关系型数据库外的数据库,都认为是非关系型。
不需要预先建库建表定义数据存储表结构,每条记录可以有不同的数据类型和字段个数(比如微信群聊里的文字、图片、视频、音乐等)。
主流的 NoSQL 数据库有 Redis、MongBD、Hbase、Memcached、ElasticSearch、TSDB 等。
关系型数据库和非关系型数据库区别:
(1)数据存储方式不同
关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。
(2)扩展方式不同
SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。
要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来克服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。
而NoSQL数据库是横向扩展的。因为非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
(3)对事务性的支持不同
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。
非关系型数据库产生背景
可用于应对 Web2.0 纯动态网站类型的三高问题(高并发、高性能、高可用)。
(1)High performance——对数据库高并发读写需求
(2)Huge Storage——对海量数据高效存储与访问需求
(3)High Scalability && High Availability——对数据库高可扩展性与高可用性需求
关系型数据库和非关系型数据库都有各自的特点与应用场景,两者的紧密结合将会给Web2.0的数据库发展带来新的思路。让关系型数据库关注在关系上和对数据的一致性保障,非关系型数据库关注在存储和高效率上。例如,在读写分离的MySQL数据库环境中,可以把经常访问的数据存储在非关系型数据库中,提升访问速度。
总结:
关系型数据库:
实例-->数据库-->表(table)-->记录行(row)、数据字段(column)
非关系型数据库:
实例-->数据库-->集合(collection)-->键值对(key-value)
非关系型数据库不需要手动建数据库和集合(表)。
Redis简介
Redis(远程字典服务器) 是一个开源的、使用 C 语言编写的 NoSQL 数据库。
Redis 基于内存运行并支持持久化,采用key-value(键值对)的存储形式,是目前分布式架构中不可或缺的一环。
Redis服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降;若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。即:在实际生产环境中,需要根据实际的需求来决定开启多少个Redis进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若CPU资源比较紧张,采用单进程即可。
Redis 具有以下几个优点:
(1)具有极高的数据读写速度:数据读取的速度最高可达到 110000 次/s,数据写入速度最高可达到 81000 次/s。