蓝桥杯 算法提高 长度统计(Python 3)

本文介绍了解决给定线段及其端点的覆盖长度问题的算法,通过排序、区间合并等步骤,提供了Python代码示例,适用于数据规模0<n<1000的场景。
摘要由CSDN通过智能技术生成

问题描述

  给出n个线段以及它们的左端点和右端点。我们要求得到这些线段覆盖部分的长度。如线段[1,2]和[2,3]覆盖了数轴上1到3这个部分,所以它们覆盖的长度就是2。

输入格式

  第一行一个数n表示有n条线段,之后的n行每行两个整数表示每个线段的左端点和右端点。

输出格式

  一个数表示覆盖部分的长度。

样例输入

3
1 2
2 3
4 5

样例输出

3

数据规模和约定

  0<n<=1000, 答案不超过32位整数。

思路:

1.首先对于数据输入我们可以将他们以元组的形式存储到列表中,存储后再进行后续操作

2. 按照左端点进行排序,防止出现右端点交叉的问题

3.对于这道题排完序后,我们的核心问题在于如何统计所覆盖到的长度,其中难点其一在于线段出现后的多情况(有无覆盖范围),其二,线段的右端点的更新问题。其三,总覆盖长度的更新;对于前两个问题我们可以结合的来看: 如果我们的长度没有覆盖范围我们需要更新右端点嘛?肯定是不用的; 此时我们直接把数据更新到结果上即可,右端点更新只需要考虑到有覆盖范围的情况即可,我们先前进行了排序所以也避免了端点交叉的问题,到此这个问题也解决了

4. 最后针对于总长度的更新我们可以建立新变量解决即可

最后附上AC代码:(第一次写博客,大神轻喷)

n = int(input())
li = []
for i in range(n):
    nums = list(map(int, input().split()))
    a = tuple(nums)
    li.append(a)
li.sort(key = lambda x : x[0])

result = 0
start = li[0][0]
end = li[0][1]
for i in li[1:]:
    if i[0] <= end:
        end = max(end, i[1])
    else:
        result += end-start
        start = i[0]
        end = i[1]
result += end - start
print(result)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值