Acwing搜索与图论(C++例题与答案)(顺序三)

DFS(深度优先搜索)

例题(排列数字)

一个题解

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>

using namespace std;

const int N = 10;
int path[N];
//用来存取方案 
bool st[N];
//用来存取每个数字的状态,表明数字是否被用过
   int n ;
void dfs(int u){
	
	if(u == n){
		//u = n时代表n个位置都已经被填满了 可以直接输出 
		for(int i = 0 ; i < n ; i++){
			printf("%d ",path[i]);
		}
		puts("");
		return ;
	}
	
	//如果u不等于n,就代表空位还没有被填满
	
	for(int i = 1 ; i <= n ; i++){
		if(!st[i]){
			path[u] = i;
			st[i] = true ;
            //进入递归前 修改状态
			dfs(u+1);
            //递归结束后 及时恢复原状态
			st[i] = false ;
		}
		
	} 
	
	
} 
int main(){
	

   cin >> n;
   
    dfs(0); 
} 

例题(n皇后问题)

一个题解

#include <iostream>
using namespace std;
const int N = 20; 

// col列,dg斜线,udg反斜线
// g[N][N]用来存图

int n;
char g[N][N];
bool col[N], dg[N], udg[N];

void dfs(int u) {
    if (u == n) {
        for (int i = 0; i < n; i ++ ) puts(g[i]);
        puts("");  // 换行
        return;
    }

    for (int i = 0; i < n; i ++ )
        if (!col[i] && !dg[u + i] && !udg[n + u - i]) {
            g[u][i] = 'Q';
            col[i] = dg[u + i] = udg[n + u - i] = true;
            dfs(u + 1);
            col[i] = dg[u + i] = udg[n + u - i] = false; // 恢复现场
            g[u][i] = '.';

        }
}

int main() {
    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            g[i][j] = '.';

    dfs(0);

    return 0;
}

BFS(宽度优先搜索)

例题(走迷宫)

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 110;

int n, m;
// 用g来存储图,d来存储各个节点到起始节点的路径
int g[N][N], d[N][N];

int bfs()
{
    // 定义一个队列q来存储最新到达的地点,队首出队的时候,也是走向下一个节点的时候
    queue<PII> q;
    // 将距离d首先初始化为-1
    memset(d, -1, sizeof d);
    // 初始化起始节点的距离d[0,0] = 0
    d[0][0] = 0;
    // 将起始节点加到队列中
    q.push({0, 0});

    // 定义四个方向
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    
    // 如果队列不为空
    while (q.size())
    {
        
        // 将队首元素赋值给t
        auto t = q.front();
        // 队首出队
        q.pop();

        // 站在这个路口,向前后左右四个方向看(这个求向左走(x-1,y)、向右走(x+1,y)、向上走(x,y-1)、向下走(x,y+1)的写法可以背下来)
        for (int i = 0; i < 4; i ++ )
        {
            // t为队首元素,即当前路口的x值,t.first为x轴的值,t.first + dx[i]为向左右走
            // t为队首元素,即当前路口的y值,t.second为y轴的值,t.second + dy[i]为向上下走
            int x = t.first + dx[i], y = t.second + dy[i];
            
            // 如果如果坐标(x,y)合法(在给定图的范围内)且能走(g[x][y] == 0)且没有走过(d[x][y] == -1)
            if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
            {
                // 将这个位置(x,y)到起始点(0,0)的距离(在上一步的距离+1(d[t.first][t.second] + 1))加到d[x][y]中
                d[x][y] = d[t.first][t.second] + 1;
                // 将这个新到达的位置加入队列
                q.push({x, y});
            }
        }
    }
    
    // 输出右下角(n-1,m-1)到起始点的距离d[n - 1][m - 1]即可
    // 因为bfs有最短性,所有直接输出就是左上角到右下角的最短的路径
    return d[n - 1][m - 1];
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            cin >> g[i][j];

    cout << bfs() << endl;

    return 0;
}

树与图的存储

数是特殊的图(无环连痛图),图又分为有向图(边有方向)和无向图(边无方向),无向图是一种特殊的有向图。有向图一般存储方式有两大类:

邻接矩阵 g[a,b](用的比较少,开个二维数组):   时间复杂度为O(n2),比较浪费空间,常用于存储稠密图。邻接矩阵不能存储重边,一般存储时只保留一条边。

邻接表(用的多):   每个节点为头结点的单链表存储着从当前节点能走到的那些点。

数与图的遍历

例题(树的重心,深度优先)

一个题解

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = N * 2;

int n;
// h[N] 表示有N个槽
// e[M], ne[M], idx含义与单链表一致
int h[N], e[M], ne[M], idx;
int ans = N;
bool st[N]; // 表示哪些点已经遍历过了

// 插入一条a到b的边
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 深度优先搜索dfs
int dfs(int u)
{
    st[u] = true; // 当前节点已经被搜索过了

    int size = 0, sum = 0;
    for (int i = h[u]; i != -1; i = ne[i]) // 遍历数的所有边
    {
        int j = e[i];
        if (!st[j]){
            int s = dfs(j);
            size = max(size, s);
            sum += s;
            
        }
    }

    size = max(size, n - sum - 1);
    ans = min(ans, size);

    return sum + 1;
}

int main()
{
    scanf("%d", &n);

    memset(h, -1, sizeof h);

    for (int i = 0; i < n - 1; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }

    dfs(1);

    printf("%d\n", ans);

    return 0;
}

模板

int dfs(int u)
{
    st[u] = true; // st[u] 表示点u已经被遍历过

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j]) dfs(j);
    }
}

例题(图中点的层次,广度优先)

一个题解

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 100010;

int n, m;
int h[N], e[N], ne[N], idx;
int d[N];// 保存1号点到各个点的距离
// -------------------------------A1开始------------------------------------
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
// -------------------------------A1结束------------------------------------
int bfs()
{
    //---------------------------------------------A2开始-------------------------------
    memset(d, -1, sizeof d);

    queue<int> q;
    d[1] = 0;
    q.push(1);

    while (q.size())
    {
        int t = q.front();
        q.pop();
        //---------------------------------------A2结束--------------------------------
        
        // ---------------核心代码开始---------------------------------------
        // 循环遍历所有与t相距为1的节点
        for (int i = h[t]; i != -1; i = ne[i]) // ne[i]上的点都是与i节点距离为1的点
        {
            int j = e[i]; // 向外走一步
            if (d[j] == -1) // 如果j没有被遍历过
            {
                d[j] = d[t] + 1; // 因为路径长度都是1,所以直接在上一步的基础上加上1即可
                q.push(j); // 将j加到队列中
            }
        }
    }
    return d[n]; // 返回的d[n]即是节点1到节点n的距离
    
    // ---------------核心代码结束---------------------------------------
}


// ---------------A3开始---------------------------------------
int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);

    for (int i = 0; i < m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }

    cout << bfs() << endl;

    return 0;
}
// ---------------A3结束---------------------------------------

模板

queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);

while (q.size())
{
    int t = q.front();
    q.pop();

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

拓扑排序

例题(有向图的拓扑排序)

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n, m; // 输入需要的参数n,m
int h[N], e[N], ne[N], idx; // 构建图需要的参数
int d[N]; // d[i] 表示 节点i的入度是多少
int q[N]; // 用q[]来保存保存拓扑序列

// 构建图
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 拓扑排序
bool topsort()
{
    // 用数组模拟队列
    int hh = 0, tt = -1;
    
    // 将入度为0的节点放入队列q中
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    // 如果队列不为空
    while (hh <= tt)
    {
        // 队首出队,出队元素赋值为t
        int t = q[hh ++ ];
        
        // 遍历与出队元素相邻的所有边
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (-- d[j] == 0) // 如果减去一个入度后j节点的入度为0
                q[ ++ tt] = j; // 那么将它加到队列中
        }
    }

    // 判断是不是所有下标都入队了,如果tt == n - 1 ,那么队列中就有n个元素
    // 那么说明它是一个有向无环图,否则说明它是一个存在环的图,即不存在拓扑序列
    return tt == n - 1;
}


int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);
    
    // 构建图
    for (int i = 0; i < m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);

        d[b] ++ ; // 加入一条a指向b的边,b的入度加1,用d[b]++表示b的入度加1
    }
    
    // 如果没有拓扑序列输出-1
    if (!topsort()) puts("-1");
    // 否则输出这个序列
    else
    {
        for (int i = 0; i < n; i ++ ) printf("%d ", q[i]);
    }

    return 0;
}

模板

bool topsort()
{
    int hh = 0, tt = -1;

    // d[i] 存储点i的入度
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    while (hh <= tt)
    {
        int t = q[hh ++ ];

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;
        }
    }

    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;
}

最短路径

朴素Dijkstra

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510;

int n, m;
int g[N][N]; // 图g,存的是两条边之间的距离,如g[a][b]存的就是a到b的距离
int dist[N]; // 从1号点走到每个点的最短距离是多少
bool st[N]; // i号点的距离是否确定了

int dijkstra()
{       
    // 将所有的距离初始化为无穷
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
	// 循环n-1次,因为有n个节点,要更新n-1次距离
    for (int i = 0; i < n - 1; i ++ )
    {
    	// 找最小值节点t,找所有没被确定的点的距离节点1距离最近的节点
        int t = -1; // t = -1 表示还没有确定节点是哪个
        for (int j = 1; j <= n; j ++ )
            // 如果j的点的距离未定下来且 t == -1或 dist[t] > dist[j](当前这个t不是最短的)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        
        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);
		
		// 用一个节点更新完与之相连的所有节点后,这个点的值就算作确定下来了
        st[t] = true;
    }
    
    /* 如果第一个节点到第n个节点的长度为0x3f3f3f3f(无穷大)时,说明不存在这条路径,返回-1
    if (dist[n] == 0x3f3f3f3f) return -1;
    // 否则返回n的最短距离
    return dist[n];*/
    
    return d[n] == 0x3f3f3f3f? -1 : d[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    
    // 图g的初始化
    memset(g, 0x3f, sizeof g);
    
    // 读入m条边
    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
		
		// 处理重边
        g[a][b] = min(g[a][b], c);
    }

    printf("%d\n", dijkstra());

    return 0;
}

模板

int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

堆优化Dijkstra

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII; // 堆中存储的元素

const int N = 1e6 + 10;

int n, m;
// W[]是边的权重
int h[N], w[N], e[N], ne[N], idx; // 稀疏图,用邻接表的形式来存
int dist[N];
bool st[N];

// 加边的模板
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    // 放入起点
    heap.push({0, 1});

    // 堆不空
    while (heap.size())
    {
        // 找到堆中最小的点
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[ver] + w[i])
            {
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h); 
    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    cout << dijkstra() << endl;

    return 0;
}

模板

typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

Bellman-Ford

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 10010;

// 定义一个结构体来存储所有边
struct Edge
{
    int a, b, c;
}edges[M];

int n, m, k;
int dist[N];
int last[N];

void bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);

    dist[1] = 0;
    // 循环k次
    for (int i = 0; i < k; i ++ )
    {
        // 备份上一次迭代的结果last
        /*
            memcpy是内存拷贝函数
            有三个参数:*destin, *source, n
            
            void *memcpy(void *destin, void *source, unsigned n);
            
            它从源source所指的内存地址的起始位置开始拷贝n个字节到目标destin所指的内存地址的起始位置中
            然后返回一个指向目标存储区destin的指针
        */
        memcpy(last, dist, sizeof dist);
        // 每次循环遍历所有边,修改每个节点的最短路径
        for (int j = 0; j < m; j ++ )
        {
            auto e = edges[j];
            // dist[e.b]是节点1到b节点目前的距离
            // last[e.a] + e.c是节点1到a节点,再从a节点到b节点的距离
            dist[e.b] = min(dist[e.b], last[e.a] + e.c);
        }
    }
}
int main()
{
    scanf("%d%d%d", &n, &m, &k);

    for (int i = 0; i < m; i ++ )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        edges[i] = {a, b, c}; // 表示存储一条a到b的边,边权为c
    }
    
    // 更新所有节点到1号节点的最短距离
    bellman_ford();
    
    // 可能有负数导致最后的结果不等于0x3f3f3f3f,但是也是无限接近于无穷大的,因此dist[n] > 0x3f3f3f3f / 2就可以认为是无穷大了
    if (dist[n] > 0x3f3f3f3f / 2) puts("impossible");
    else printf("%d\n", dist[n]);

    return 0;
}

模板

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

spfa求最短路

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 100010;

int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N]; // st[]存的是当前这个点是不是在队列中,防止队列中存重复的点

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

int spfa()
{   
    // 初始一下所有点的距离
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        int t = q.front();
        
        q.pop();
        st[t] = false;
        
        // 搜索一下t的所有临边
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            // 更新所有相邻的节点值
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                // 如果该节点不在队列中
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    int t = spfa();

    if (t == 0x3f3f3f3f) puts("impossible");
    else printf("%d\n", t);

    return 0;
}

模板

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

spfa判断负环

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 2010, M = 10010;

int n, m;
int h[N], w[M], e[M], ne[M], idx; // idx是小于10010的,因此,e、w、ne数组都要初始为M
int dist[N], cnt[N];// cnt表示当前最短路边的数量
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

bool spfa()
{
    queue<int> q;
        
    // 将所有点都放到队列中,如果只放节点1的话,可能从1到不了该负环
    for (int i = 1; i <= n; i ++ )
    {
        st[i] = true;
        q.push(i);
    }

    while (q.size())
    {
        int t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                // 更新d数组的时候,将cnt数组在上一个节点的距离+1
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;

                // 如果到某个点的边数 >=n 则说明一定至少有有n+1个节点,则证明一定存在两个相同的节点,则说明一定存在环
                // 那么为什么是负环呢?
                // 这是因为如果是正环的话,这个节点是不会被更新的(因为路径权重会增加),只有当它为负环时候,它才会走这条环,因此这个环一定是负环
                
                if (cnt[j] >= n) return true;
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    if (spfa()) puts("Yes");
    else puts("No");

    return 0;
}

模板

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

floyd求最短路

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 210, INF = 1e9;// INF---无穷大

int n, m, Q;
int d[N][N];// 如d[i][j] ,表示从节点i走到节点j的距离

// 弗洛伊德算法
void floyd()
{
    // 三层循环
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main()
{
    scanf("%d%d%d", &n, &m, &Q);
    
    // 初始化
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

    // 读入每条边
    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        // 如果有多条边,保留最小边
        d[a][b] = min(d[a][b], c);
    }

    floyd();
    
    // 处理所有询问
    while (Q -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);

        int t = d[a][b];
        if (t > INF / 2) puts("impossible");
        else printf("%d\n", t);
    }

    return 0;
}

模板

初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

最小生成树

Prim求最小生成树

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int n, m;
int g[N][N];
int dist[N];
bool st[N];


int prim()
{
    memset(dist, 0x3f, sizeof dist);

    int res = 0; // res存的是最小生成树的树边权重之和
    for (int i = 0; i < n; i ++ )
    {   
        int t = -1;
        // 找当前集合(最小生成树)外的距离最短的节点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        // 如果找到的点到集合的最短距离是INF,则说明这是一个不连通的图,没有最小生成树
        if (i && dist[t] == INF) return INF;
        
        // 否则把这个点加到集合内
        if (i) res += dist[t];
        st[t] = true; // 表示该节点已经加到最小生成树了
        
        // 用这个点更新一下其他节点到集合的距离
        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}


int main()
{
    scanf("%d%d", &n, &m);

    memset(g, 0x3f, sizeof g);

    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = g[b][a] = min(g[a][b], c); // 建无向图,保留长度最小的那条边即可
    }

    int t = prim();

    if (t == INF) puts("impossible");// 有点不连通的时候,不存在最小生成树
    else printf("%d\n", t);

    return 0;
}

模板

int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
    memset(dist, 0x3f, sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        if (i && dist[t] == INF) return INF;

        if (i) res += dist[t];
        st[t] = true;

        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

Kruskal算法求最小生成树

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 200010, INF = 0x3f3f3f3f;

int n, m;
int p[N];

struct Edge
{
    int a, b, w;

    // 重载小于号
    bool operator< (const Edge &W)const // 一般来说比较函数写在结构体内会比写在外部快
    {
        return w < W.w;
    }
    
}edges[M];

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    // 将所有边排序
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)
        {
            p[a] = b; // 合并两个集合
            res += w;
            cnt ++ ; // cnt存的是当前加了多少条边
        }
    }
    
    
    if (cnt < n - 1) return INF;
    return res;
}

int main()
{
    scanf("%d%d", &n, &m);

    for (int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }

    int t = kruskal();

    if (t == INF) puts("impossible");
    else printf("%d\n", t);

    return 0;
}

模板

int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

二分图

染色法

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 200010;// 无向图,两个节点间要存两条边

int n, m;
int h[N], e[M], ne[M], idx;
int color[N]; // 表示当前节点是否被染过色

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 染色过程
bool dfs(int u, int c)
{
    color[u] = c; // 记录当前点的颜色为c

    for (int i = h[u]; i != -1; i = ne[i]) // 遍历
    {
        int j = e[i];
        if (!color[j])  // 如果当前节点没有染过颜色
        {
            if (!dfs(j, 3 - c)) return false; // 3-c表示:如果染过1号颜色(c = 1),则染2号颜色(3-c = 2);如果染过2号颜色,则染1号颜色
        }
        else if (color[j] == c) return false; // 如果当前节点已经染过颜色,则判断是否有矛盾即可
    }

    return true;
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }

    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (!color[i]) // 如果当前节点未染过色,用dfs去染色
        {
            if (!dfs(i, 1)) // 如果有矛盾发生(dfs为false) (1传入dfs,表示将第i个点染成1代表的颜色)
            {
                flag = false;
                break;// 如果有矛盾,直接break,返回No即可
            }
        }

    if (flag) puts("Yes");
    else puts("No");

    return 0;
}

模板

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, !c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (color[i] == -1)
            if (!dfs(i, 0))
            {
                flag = false;
                break;
            }
    return flag;
}

匈牙利算法

例题

一个题解

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 100010;

int n1, n2, m;
int h[N], e[M], ne[M], idx; // 稀疏图用邻接表存储
int match[N];
bool st[N]; // st数组判重,即不要重复搜一个点

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 找给出的节点x能否配对
bool find(int x){
    for(int i = h[x];i != -1;i = ne[i]){
        int j = e[i]; // j是n2集合的一个数
        if(st[j] == 0){ // 如果j没考虑过,考虑它
            st[j] = 1; // j考虑过了,不重复考虑
            if(match[j] == 0 || find(match[j])){ // 如果j未配对,或者与j配对的值(在n1集合中)能再找一个值配对
                match[j] = x; // 则这个j与x配对
                return true; // 成功配对一组
            }
        }
    }
    return false;
}

int main()
{
    scanf("%d%d%d", &n1, &n2, &m);

    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }

    int res = 0;
    for (int i = 1; i <= n1; i ++ )
    {
        memset(st, false, sizeof st); // 每次都要将st数组置位0,表示没有考虑过所有的节点
        if (find(i)) res ++ ; // 如果能成功配对,res加1表示成功配对的组数加1
    }

    printf("%d\n", res);

    return 0;
}

模板

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值