自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(541)
  • 收藏
  • 关注

原创 使用DGL环境报错:Setting the default backend to “pytorch“,BACKEND can be chosen from mxnet, pytorch, tensor

大意:要将一个dgl文件夹下的json文件的backend默认值设置成pytorch。

2025-03-20 15:48:39 159

原创 小白都能看懂的连接实验室服务器环境配置 & PyCharm连接服务器攻略

Local path要求的是你填入本地的项目名称路径,接下来的是部署到服务器上的项目名称,这两个可以保持一致,也可以不保持一致。显卡占用和GPU占用是两个不一样的东西,显卡是由GPU和显卡等组成的,显卡和GPU的关系有点类似于内存和CPU的关系,两个指标的占用率不一定是互相对应的。来打开相应的RemoteHost面板,这个面板显示的就是服务器上的文件,显示的范围是你在Deployment中的Connection选项卡下配置的Root path路径下的文件及文件夹。这样,Deployment的配置就完成了。

2025-03-03 18:59:27 1270

原创 2024吉林大学软件需求分析与规范期末考试原题与常考内容总结

需求:(1)用户达到某个目标所需要的条件或能力(2)一个系统或系统组件为了实现某个规格说明或其他需要遵循的文件而必须要满足的条件或拥有的能力(3)对(1)或(2)中所描述的条件的文档化表示需求分类:功能需求:定义系统应该提供什么服务,系统应该如何对特殊输入做出反应,以及系统在特殊情况下应该如何表现。在某些情况下,还定义了系统不应该做什么,质量属性(非功能需求):系统完成工作的质量。性能需求(非功能需求):系统整体或系统组成部分应该拥有的性能特征,例如CPU使用率、内存使用率等。

2025-01-06 17:02:05 542

原创 2025吉林大学研究生软件需求分析与规范应用题计算题总结与真题分类

1.掌握数据流图的基本概念2.掌握数据流图的层次结构3.掌握数据流图的画法4.分层数据流图的审查。

2025-01-06 16:49:01 1092

原创 2025吉林大学软件学院《人工智能原理》期末考试原题

5题共10分5.以下模型不需要训练过程的是?A.支持向量机 B.决策树C.KNN近邻算法 D.卷积神经网络。

2025-01-02 16:12:42 279

原创 图神经网络(GCN、GAT、HAN)原理及实现代码

异构图又称异质图。

2024-12-08 18:22:26 1403

原创 注意力机制

之前都是以一个向量作为输入的。

2024-11-28 19:59:33 972

原创 GNN系统学习:基于图神经网络的节点表征学习

GCN 来源于论文“Semi-supervised Classification with Graph Convolutional Network”,其数学定义为,X′D−12AD−12XΘX′D−1/2AD−1/2XΘ其中AAIAAI表示插入自环的邻接矩阵(使得每一个节点都有一条边连接到自身),Dii∑j0AijDii​∑j0​Aij​表示AA的对角线度矩阵(对角线元素为对应节点的度,其余元素为0)。

2024-11-18 17:07:25 826

原创 GNN系统学习:消息传递图神经网络

下方图片展示了基于消息传递范式的聚合邻接节点信息来更新中心节点信息的过程图中黄色方框部分展示的是一次邻接节点信息传递到中心节点的过程:B节点的邻接节点(A,C)的信息经过变换后聚合到B节点,接着B节点信息与邻接节点聚合信息一起经过变换得到B节点的新的节点信息。同时,分别如红色和绿色方框部分所示,遵循同样的过程,C、D节点的信息也被更新。实际上,同样的过程在所有节点上都进行了一遍,所有节点的信息都更新了一遍。这样的“邻接节点信息传递到中心节点的过程”会进行多次。

2024-11-11 17:11:30 1533

原创 GNN系统学习:简单图论、环境配置、PyG中图与图数据集的表示和使用

一个图被记为GVEGVE,其中Vv1vNVv1​vN​是数量为N∣V∣N∣V∣的节点的集合,Ee1eMEe1​eM​是数量为MMM的边的集合。图用节点表示实体(entities ),用边表示实体间的关系(relations)。节点和边的信息可以是类别型的(categorical),类别型数据的取值只能是哪一类别。一般称类别型的信息为标签(label)。节点和边的信息可以是数值型的。

2024-11-10 19:25:12 870

原创 GIN:逼近WL-test的GNN架构

在 图卷积网络GCN 中我们已经知道图神经网络在等任务上的作用,但GIN(图同构神经网络)给出了一个对于图嵌入(graph embedding)更强的公式。GIN,图同构神经网络,致力于解决使用GNN的问题,我们知道采用等GNN可以得到本篇博文将关注利用GNN进行的学习。图表征学习要求根据节点属性、边和边的属性(如果有的话)生成一个向量作为图的表征,基于图表征可以做图的预测。基于**图同构网络(Graph Isomorphism Network, GIN)**的图表征网络是当前最经典的图表征学习网络。

2024-11-10 16:11:08 1553

原创 归一化(normalization)、标准化(standardization)以及正则化(regularization)比较

特征缩放的作用是:(1)使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。(2)加快学习算法的收敛速度。在使用梯度下降的方法求解最优化问题时, 归一化/标准化后可以加快梯度下降的求解速度。

2024-11-01 20:28:04 1431

原创 PyTorch 训练集、验证集、测试集、模型存档、正则化项

训练集(Training Dataset)是用来训练模型使用的。

2024-11-01 12:37:26 995

原创 分类模型评估指标:Accuracy、Precision、Recall、F1、ROC曲线、AUC、PR曲线

Accuracy=TT+TFALLAccuracy = \frac{TT + TF}{ALL}Accuracy=ALLTT+TF​1.分类器到底分对了多少?2.返回的图片中正确的有多少?3.有多少张应该返回的图片没有找到?这个问题可以通过Recall值来体现(因为Recall值 = 有多少张应该返回的图片没有找到 / 应该返回的图片总数,该公式中除了"有多少张应该返回的图片没有找到"的值是变量以外,其它均为常数)召回率代表“本应返回的照片中,实际返回了多少”Recall为返回的图片中汉堡的图片的数目

2024-10-26 20:51:12 1229

原创 主成分分析法(PCA)

先从一个简单数据集开始如果只测量一个基因,则可以将数据绘制在一个一维的数轴上即使这是一个简单的图,它也展示了小鼠123之间的相似性要比它们与456的相似性更高如果测量两个基因,则可以将数据绘制在一个二维XY图上如果我们测量三个基因,我们将在图上添加另一个坐标轴,使其看起来像三维如果我们测量四个基因,我们将无法再绘制数据所以我们会讨论,如下图我们还将讨论?例如PCA可能告诉我们基因3承担了沿x轴分离样本,如下图最后,我们将讨论PCA告诉我们2d图像准确性的启示,如下图。

2024-10-17 15:55:02 1977

原创 简单粗暴理解GNN、GCN、GAT

以上就是它整个方法的模型,下面再说说结果。

2024-10-12 22:50:53 1280

原创 Graph Contrastive Learning 图对比学习GCL

一般意义上,图对比学习是一种针对图数据的自监督学习算法。对给定的大量无标注图数据,图对比学习算法旨在训练出一个图编码器,目前一般指图神经网络(Graph Neural Network, GNN)。由这个 GNN 编码得到的图表示向量,可以很好地保留图数据的特性,并进一步在无监督、半监督、迁移学习以及鲁棒性测试等实验设置下进行测试,并应用于社交网络、蛋白质交互网络、分子结构、学术引用网络等多个场景中。随机采样一批(batch)图;对每一个图进行两次随机的数据增强(如删除若干条边(edge)),增强后。

2024-10-12 15:23:55 1453

原创 零基础多图详解图神经网络(GNN/GCN)【李沐论文精读】

图神经网络在应用上还只是起步阶段,应用领域有药物发现、物理模拟、虚假新闻检测、车流量预测、推荐系统等。这篇文章是探索和解释现代图神经网络,第一部分是什么样的数据能表示成一张图,第二部分是图和别的数据有什么不同,第三部分是构建GNN的模块,第四部分是搭建一个GNN的playground图是一个序列。图越深,上层的节点链接的下次节点越多把节点信息、边信息和全局信息做embedding,通俗地说就是把这些信息存储为向量的形式。所以图神经的核心就是,怎么样把我们想要的信息表示成向量,以及向量是否能通过数据学习到。

2024-10-07 15:40:56 1149

原创 李宏毅深度学习-图神经网络GNN

b:在邻居最大值相同的情况,取最大值会失败c:在邻居最大值相同且平均相同的情况,只有总和成功思想:用。

2024-10-06 18:07:18 1175

原创 李宏毅深度学习-自注意力机制

在图像识别的时候,假设输入的图像大小都是一样的。但如果问题变得复杂,如图6.2所示,输入是一组向量,并且输入的向量的数量是会改变的,即每次模型输入的序列长度都不一样,这个时候应该要怎么处理呢?我们通过具体的例子来讲解处理方法。第一个例子是,假设网络的输入是一个句子,每一个句子的长度都不一样(每个句子里面词汇的数量都不一样)。如果把一个句子里面的每一个词汇都描述成一个向量,用向量来表示,模型的输入就是一个向量序列,而且该向量序列的大小每次都不一样(句子的长度不一样,向量序列的大小就不一样)。

2024-10-06 15:14:40 1330

原创 李宏毅深度学习-循环神经网络RNN

在RNN 里面,每一次隐藏层的神经元产生输出的时候,该输出会被存到记忆元(memory cell),图5.6(a) 中的蓝色方块表示 记忆元。下一次有输入时,这些神经元不仅会考虑输入x1, x2,还会考虑存到记忆元里的值。除了x1, x2,存在记忆元里的值a1, a2 也会影响神经网络的输出。记忆元可简称为单元(cell),记忆元的值也可称为隐状态(hidden state)。举个例子,假设图5.6(b) 中的神经网络所有的权重都是1,所有的神经元没有任何的偏置(bias)。

2024-10-04 14:58:48 1049

原创 动手学深度学习(李沐)PyTorch 第 7 章 现代卷积神经网络

在计算机视觉中,直接将神经网络与其他机器学习方法进行比较也许不公平。这是因为,卷积神经网络的输入是由原始像素值或是经过简单预处理(例如居中、缩放)的像素值组成的。但在使用传统机器学习方法时,从业者永远不会将原始像素作为输入。在传统机器学习方法中,计算机视觉流水线是由经过人的手工精心设计的特征流水线组成的。对于这些传统方法,大部分的进展都来自于对特征有了更聪明的想法,并且学习到的算法往往归于事后的解释。虽然上世纪90年代就有了一些神经网络加速卡,但仅靠它们还不足以开发出有大量参数的深层多通道多层卷积神经网络。

2024-10-03 19:01:05 1209 1

原创 李宏毅深度学习-梯度下降和Batch Normalization批量归一化

▽ -> 梯度gradient -> vector向量 -> 下图中的红色箭头(loss等高线的法线方向)

2024-10-02 20:45:54 763

原创 动手学深度学习(李沐)PyTorch 第 6 章 卷积神经网络

通过下面的LeNet代码,可以看出用深度学习框架实现此类模型非常简单。我们只需要实例化一个Sequential块并将需要的层连接在一起。

2024-10-01 15:26:14 1199

原创 动手学深度学习(李沐)PyTorch 第 5 章 深度学习计算

要想直观地了解块是如何工作的,最简单的方法就是自己实现一个。在实现我们自定义块之前,我们简要总结一下每个块必须提供的基本功能。将输入数据作为其前向传播函数的参数。通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。存储和访问前向传播计算所需的参数。根据需要初始化模型参数。

2024-09-29 19:14:03 1342

原创 动手学深度学习(李沐)PyTorch 第 4 章 多层感知机

实现这一惩罚最方便的方法是对所有项求平方后并将它们求和。参数:w:通常是神经网络的权重向量(或矩阵),也可以是任何需要正则化的参数。w 是一个 torch.Tensor 对象,它可以是模型中的权重张量。w.pow(2):w.pow(2) 表示对张量 w 中的每个元素进行 平方运算。实际上,这等价于对张量 w 中每个权重求平方:w^2=w x w这个操作是逐元素的,生成一个新的张量,其元素是原来w中每个元素的平方。是对w.pow(2)结果的所有元素进行 求和。这个操作会返回一个标量。

2024-09-28 14:08:06 1469

原创 PyTorch深度学习快速入门教程【土堆】神经网络篇

在使用nn.module构建神经网络时,需要在__init__()方法中对继承的Module类中的属性进行调用,因此在初始化方法中需要添加self.conv1 = nn.Conv2d(1, 20, 5) #这是第一层卷积层,定义了输入为单通道(1),输出通道数为 20,卷积核的大小为 5x5self.conv2 = nn.Conv2d(20, 20, 5) #第二层卷积层,输入和输出通道都是 20,卷积核的大小仍然是 5x5。# forward() 前向传播函数。

2024-09-25 19:15:04 1198

原创 动手学深度学习(李沐)PyTorch 第 3 章 线性神经网络

接下来,我们必须定义模型,将模型的输入和参数同模型的输出关联起来。回想一下,要计算线性模型的输出, 我们只需计算输入特征X和模型权重w的矩阵-向量乘法后加上偏置b。注意,上面的Xw是一个向量,而b是一个标量。回想一下 2.1.3节中描述的广播机制: 当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。"""线性回归模型"""因为需要计算损失函数的梯度,所以我们应该先定义损失函数。这里我们使用 3.1节中描述的平方损失函数。在实现中,我们需要将真实值y的形状转换为和预测值y_hat的形状相同。

2024-09-23 15:43:27 1350

原创 动手学深度学习(李沐)PyTorch 第 2 章 预备知识

N维数组是机器学习和神经网络的主要数据结构张量表示一个由数值组成的数组,这个数组可能有多个维度。具有一个轴的张量对应数学上的向量(vector);具有两个轴的张量对应数学上的矩阵(matrix);具有两个轴以上的张量没有特殊的数学名称。

2024-09-21 14:08:05 997 1

原创 动手学深度学习(李沐)PyTorch 第 1 章 引言

使用conda环境安装需要的包下载代码并执行如果不想使用jupyter,可以在电子书每一章节的右上角点击colab不过需要注意colab没有安装d2l,所以需要安装。

2024-09-19 18:37:05 813 1

原创 PyTorch深度学习快速入门教程【土堆】基础知识篇

​ CIFAR10 数据集包含了6万张32×32像素的彩色图片,图片有10个类别,每个类别有6千张图像,其中有5万张图像为训练图片,1万张为测试图片。如何把数据集(多张图片)和 transforms 结合在一起CIFAR10数据集原始图片是PIL Image,如果要给pytorch使用,需要转为tensor数据类型(转成tensor后,就可以用tensorboard了)transforms 更多地是用在 datasets 里 transform 的选项中。

2024-09-19 11:10:49 961

原创 【GPU版】Windows下PyTorch入门深度学习环境安装与配置

如果电脑有NVIDIA GPU显卡,看【GPU版本】;否则,看【CPU版本】

2024-09-15 16:10:24 1296

原创 搜索软件 Everything 的安装与使用教程

适用于 Windows 的免费搜索工具Everything 是 Windows 的即时搜索引擎。发现、整理并轻松访问文件和文件夹,一切尽在指尖!PS:Everything无法对文件内容进行搜索,只能根据文件名和路径进行搜索。

2024-09-14 10:38:36 5113

原创 机器学习(西瓜书)第 14 章 概率图模型

机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算变量的概率分布。在概率模型中,利用已知变量推测位置变量的分布称为“推断”(inference),其核心是如何基于可观测变量推测出未知变量的条件分布。具体来说,假定所关心的变量集合为Y,可观测变量集合为O,其他变量集合为R,

2024-09-13 23:54:45 1124

原创 机器学习(西瓜书)第 10 章 降维与度量学习

k 近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个 “邻居”的信息来进行预测.通常,在任务中可使用“”,即选择这k个样本中出现最多的类别标记作为预测结果;在任务中可使用“”,即将这k个样本的实值输出标记的平均值作为预测结果;还可基于距离远近进行加权平均或加权投票,距离越近的样本权重越大.与前面介绍的学习方法相比,k近邻学习有一个明显的不同之处:它似乎。

2024-09-13 16:52:36 1075

原创 机器学习(西瓜书)第 9 章 聚类

在”无监督学习“中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础.此类学习任务中研究最多、应用最广的是“聚类”(clustering).聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”(cluster).通过这样的划分,每个簇可能对应于一些潜在的概念(类别),如 “浅色瓜” “深色瓜”,“有籽瓜” “无籽瓜”,甚至“本地瓜” “外地瓜”等;

2024-09-12 22:05:54 680

原创 机器学习(西瓜书)第 7 章 贝叶斯分类器

贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法.对分类任务来说,在的理想情形下,贝叶斯决策论考虑如何来选择最优的类别标记.下面我们以多分类任务为例来解释其基本原理.贝叶斯判定准则:此时,h称为贝叶斯最优分类器(Bayes optimal classifier),与之对应的总体风险R(h)称为贝叶斯风险(Bayes risk). 1 -R(h*)反映了分类器所能达到的最好性能,即通过机器学习所能产生的模型精度的理论上限.

2024-09-12 17:28:25 1357

原创 机器学习(西瓜书)第 6 章 支持向量机

,但它们的应用场景和目标函数的不同使得它们适用于不同类型的问题。

2024-09-10 23:56:09 1002

原创 机器学习(西瓜书)第 5 章 神经网络

神经网络中最基本的成分是神经元(neuron)模型,即上述定义中的“简单单元”.在生物神经网络中,每个神经元与其他神经元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过了一个“阈值”(threshold),那么它就会被激活,即 “兴奋”起来,向其他神经元发送化学物质.

2024-09-07 19:02:03 1354

原创 机器学习(西瓜书)第 4 章 决策树

在第⑵种情形下,我们把当前结点标记为叶结点,并将其类别设定为该结点所含样本最多的类别;在第⑶种情形下,同样把当前结点标记为叶结点,但将其类别设定为其父结点所含样本最多的类别.注意这两种情形的处理实质不同:情形⑵是在利用当前结点的后验分布,而情形⑶则是把父结点的样本分布作为当前结点的先验分布.

2024-09-07 10:28:21 1439

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除