- 博客(558)
- 收藏
- 关注
原创 【SSM|第一篇】MyBatisPlus
本篇讲的是企业开发实战中经常使用的一个技术——MyBatisPlus。侧重点在于MP的基础增删改查以及衍生问题
2025-11-13 21:26:21
674
原创 【Redis|第一篇】基础篇
本篇介绍Redis作为NoSQL与MySQL的主要区别,Redis的命令行指令,基础数据结构和对应命令,Redis的Java客户端-Jedis和SpringDataRedis
2025-11-09 23:14:08
889
原创 【报错解决】java:无效的目标发行版:17;源发行版17需要目标发行版17
1、新建空项目时,设置项目SDK为1.8,language level也是82、新建模块时,模块JDK也设置成项目JDK即1.83、新建后,确认了Project Structure中Project部分的SDK和language level都是对的问题出现:运行一个测试方法时,提示;这时发现Project Structure中Modules部分中那个新建的模块的language level是17,,再使用,再运行测试方法仍然报错如上。
2025-11-08 19:02:37
1499
原创 【JavaWeb|第六篇】SpringBoot原理篇
本篇讲的是SpringBoot框架的原理。先是讲如何从IOC容器中手动获取bean、bean的作用域、如何管理第三方依赖中的bean。再是SpringBoot的两个重要功能:1、起步依赖原理就是Maven的依赖传递;2、自动装配原理。以及如何自定义起步依赖
2025-11-06 10:00:17
906
原创 【JavaWeb|第五篇】SpringBootWeb案例高级篇
本篇讲的是用户登录与未登录状态下拦截使用的JWT令牌、过滤器和拦截器。以及在出现异常情况下,1、可以传输给前端正确的json格式的全局异常处理器;2、绑定一系列mapper操作的事务管理。底层原理是JavaSE中的动态代理技术的AOP。
2025-11-04 10:17:23
945
原创 【JavaWeb|第四篇】SpringBootWeb案例篇
本篇讲的是使用前面学的SpringBoot和Mybatis的基础知识完成一个简单的tlias项目,其中包含部门管理和员工管理模块
2025-10-29 11:18:11
589
原创 Mac Nginx安装、启动、简单命令(苍穹外卖、黑马点评前端环境搭建)
nginx: Nginx是一款轻量级的Web服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器。其特点是占有内存少,并发能力强,在各大型互联网公司都有非常广泛的使用。我们如果要发布,直接将资源放入到html目录中。(上图是windows下的Nginx目录)总的来说Nginx是用来部署前端环境的。
2025-10-25 20:30:37
1115
原创 【JavaWeb|第三篇】MyBatis篇
本篇讲的是JavaWeb连接数据库的原理和使用,从最底层的JDBC到框架MyBatis(包括注解和xml文件配置两种方式),再有MaBatisX便于xml使用MyBatis
2025-10-24 11:35:35
564
原创 【JavaWeb|第二篇】SpringBoot篇
本篇讲的是SpringBoot的原理(包括Tomcat、Servlet)和其中的请求响应写法和注解
2025-10-21 22:54:49
1020
原创 【MySQL|第三篇】进阶篇上
用的资料是 [MySQL数据库入门到精通](https://www.bilibili.com/video/BV1Kr4y1i7ru) ,从中摘取了速成需要重点学习的内容
2025-10-12 12:18:46
641
原创 【MySQL|第二篇】基础篇下
用的资料是 [MySQL数据库入门到精通](https://www.bilibili.com/video/BV1Kr4y1i7ru) ,从中摘取了速成需要重点学习的内容
2025-10-04 22:24:25
693
原创 【MySQL|第一篇】基础篇上
用的资料是 [MySQL数据库入门到精通](https://www.bilibili.com/video/BV1Kr4y1i7ru) ,从中摘取了速成需要重点学习的内容
2025-10-04 22:24:16
953
原创 【JavaSE五天速通|第五篇】高级篇
适合有其他语言基础想快速入门JavaSE的。用的资料是 [Java入门基础视频教程](https://www.bilibili.com/video/BV1Cv411372m?spm_id_from=333.788.videopod.episodes&vd_source=46709f8c8ce8b39ddfc5070693f7bc00) ,从中摘取了笔者认为与其他语言不同或需要重点学习的内容此篇中的多线程、反射、动态代理都是重点内容,这里讲的有些浅,在深入理解后,后续继续背八股
2025-09-29 22:53:20
604
原创 【JavaSE五天速通|第四篇】集合篇
适合有其他语言基础想快速入门JavaSE的。用的资料是 [Java入门基础视频教程]从中摘取了笔者认为与其他语言不同或需要重点学习的内容
2025-09-23 19:59:12
694
原创 【JavaSE五天速通|第三篇】常用API与日期类篇
适合有其他语言基础想快速入门JavaSE的。用的资料是 [Java入门基础视频教程](https://www.bilibili.com/video/BV1Cv411372m?spm_id_from=333.788.videopod.episodes&vd_source=46709f8c8ce8b39ddfc5070693f7bc00) ,从中摘取了笔者认为与其他语言不同或需要重点学习的内容常用API与日期类只需要有印象即可,用到了再来这查
2025-09-14 21:35:53
940
原创 【JavaSE五天速通|第二篇】面向对象高级篇
适合有其他语言基础想快速入门JavaSE的。用的资料是 [Java入门基础视频教程](https://www.bilibili.com/video/BV1Cv411372m?spm_id_from=333.788.videopod.episodes&vd_source=46709f8c8ce8b39ddfc5070693f7bc00) ,从中摘取了笔者认为与其他语言不同或需要重点学习的内容本篇中讲解的都是JavaSE的面向对象的高级语法(三大特性中的继承、多态以及其他语法),需要深刻理解
2025-09-11 23:19:38
832
原创 Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
这篇文章中的 Graph Transformer 是 PyG库中 conv.TransformerConv 的代码来源
2025-09-05 15:09:38
1055
原创 使用DGL环境报错:Setting the default backend to “pytorch“,BACKEND can be chosen from mxnet, pytorch, tensor
大意:要将一个dgl文件夹下的json文件的backend默认值设置成pytorch。
2025-03-20 15:48:39
453
原创 小白都能看懂的连接实验室服务器环境配置 & PyCharm连接服务器攻略
Local path要求的是你填入本地的项目名称路径,接下来的是部署到服务器上的项目名称,这两个可以保持一致,也可以不保持一致。显卡占用和GPU占用是两个不一样的东西,显卡是由GPU和显卡等组成的,显卡和GPU的关系有点类似于内存和CPU的关系,两个指标的占用率不一定是互相对应的。来打开相应的RemoteHost面板,这个面板显示的就是服务器上的文件,显示的范围是你在Deployment中的Connection选项卡下配置的Root path路径下的文件及文件夹。这样,Deployment的配置就完成了。
2025-03-03 18:59:27
2492
原创 GNN系统学习:基于图神经网络的节点表征学习
GCN 来源于论文“Semi-supervised Classification with Graph Convolutional Network”,其数学定义为,X′D−12AD−12XΘX′D−1/2AD−1/2XΘ其中AAIAAI表示插入自环的邻接矩阵(使得每一个节点都有一条边连接到自身),Dii∑j0AijDii∑j0Aij表示AA的对角线度矩阵(对角线元素为对应节点的度,其余元素为0)。
2024-11-18 17:07:25
940
原创 GNN系统学习:消息传递图神经网络
下方图片展示了基于消息传递范式的聚合邻接节点信息来更新中心节点信息的过程图中黄色方框部分展示的是一次邻接节点信息传递到中心节点的过程:B节点的邻接节点(A,C)的信息经过变换后聚合到B节点,接着B节点信息与邻接节点聚合信息一起经过变换得到B节点的新的节点信息。同时,分别如红色和绿色方框部分所示,遵循同样的过程,C、D节点的信息也被更新。实际上,同样的过程在所有节点上都进行了一遍,所有节点的信息都更新了一遍。这样的“邻接节点信息传递到中心节点的过程”会进行多次。
2024-11-11 17:11:30
1965
原创 GNN系统学习:简单图论、环境配置、PyG中图与图数据集的表示和使用
一个图被记为GVEGVE,其中Vv1vNVv1vN是数量为N∣V∣N∣V∣的节点的集合,Ee1eMEe1eM是数量为MMM的边的集合。图用节点表示实体(entities ),用边表示实体间的关系(relations)。节点和边的信息可以是类别型的(categorical),类别型数据的取值只能是哪一类别。一般称类别型的信息为标签(label)。节点和边的信息可以是数值型的。
2024-11-10 19:25:12
1069
原创 GIN:逼近WL-test的GNN架构
在 图卷积网络GCN 中我们已经知道图神经网络在等任务上的作用,但GIN(图同构神经网络)给出了一个对于图嵌入(graph embedding)更强的公式。GIN,图同构神经网络,致力于解决使用GNN的问题,我们知道采用等GNN可以得到本篇博文将关注利用GNN进行的学习。图表征学习要求根据节点属性、边和边的属性(如果有的话)生成一个向量作为图的表征,基于图表征可以做图的预测。基于**图同构网络(Graph Isomorphism Network, GIN)**的图表征网络是当前最经典的图表征学习网络。
2024-11-10 16:11:08
1998
原创 归一化(normalization)、标准化(standardization)以及正则化(regularization)比较
特征缩放的作用是:(1)使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。(2)加快学习算法的收敛速度。在使用梯度下降的方法求解最优化问题时, 归一化/标准化后可以加快梯度下降的求解速度。
2024-11-01 20:28:04
1932
1
原创 分类模型评估指标:Accuracy、Precision、Recall、F1、ROC曲线、AUC、PR曲线
Accuracy=TT+TFALLAccuracy = \frac{TT + TF}{ALL}Accuracy=ALLTT+TF1.分类器到底分对了多少?2.返回的图片中正确的有多少?3.有多少张应该返回的图片没有找到?这个问题可以通过Recall值来体现(因为Recall值 = 有多少张应该返回的图片没有找到 / 应该返回的图片总数,该公式中除了"有多少张应该返回的图片没有找到"的值是变量以外,其它均为常数)召回率代表“本应返回的照片中,实际返回了多少”Recall为返回的图片中汉堡的图片的数目
2024-10-26 20:51:12
1748
原创 主成分分析法(PCA)
先从一个简单数据集开始如果只测量一个基因,则可以将数据绘制在一个一维的数轴上即使这是一个简单的图,它也展示了小鼠123之间的相似性要比它们与456的相似性更高如果测量两个基因,则可以将数据绘制在一个二维XY图上如果我们测量三个基因,我们将在图上添加另一个坐标轴,使其看起来像三维如果我们测量四个基因,我们将无法再绘制数据所以我们会讨论,如下图我们还将讨论?例如PCA可能告诉我们基因3承担了沿x轴分离样本,如下图最后,我们将讨论PCA告诉我们2d图像准确性的启示,如下图。
2024-10-17 15:55:02
2578
原创 Graph Contrastive Learning 图对比学习GCL
一般意义上,图对比学习是一种针对图数据的自监督学习算法。对给定的大量无标注图数据,图对比学习算法旨在训练出一个图编码器,目前一般指图神经网络(Graph Neural Network, GNN)。由这个 GNN 编码得到的图表示向量,可以很好地保留图数据的特性,并进一步在无监督、半监督、迁移学习以及鲁棒性测试等实验设置下进行测试,并应用于社交网络、蛋白质交互网络、分子结构、学术引用网络等多个场景中。随机采样一批(batch)图;对每一个图进行两次随机的数据增强(如删除若干条边(edge)),增强后。
2024-10-12 15:23:55
2198
原创 零基础多图详解图神经网络(GNN/GCN)【李沐论文精读】
图神经网络在应用上还只是起步阶段,应用领域有药物发现、物理模拟、虚假新闻检测、车流量预测、推荐系统等。这篇文章是探索和解释现代图神经网络,第一部分是什么样的数据能表示成一张图,第二部分是图和别的数据有什么不同,第三部分是构建GNN的模块,第四部分是搭建一个GNN的playground图是一个序列。图越深,上层的节点链接的下次节点越多把节点信息、边信息和全局信息做embedding,通俗地说就是把这些信息存储为向量的形式。所以图神经的核心就是,怎么样把我们想要的信息表示成向量,以及向量是否能通过数据学习到。
2024-10-07 15:40:56
1502
原创 李宏毅深度学习-自注意力机制
在图像识别的时候,假设输入的图像大小都是一样的。但如果问题变得复杂,如图6.2所示,输入是一组向量,并且输入的向量的数量是会改变的,即每次模型输入的序列长度都不一样,这个时候应该要怎么处理呢?我们通过具体的例子来讲解处理方法。第一个例子是,假设网络的输入是一个句子,每一个句子的长度都不一样(每个句子里面词汇的数量都不一样)。如果把一个句子里面的每一个词汇都描述成一个向量,用向量来表示,模型的输入就是一个向量序列,而且该向量序列的大小每次都不一样(句子的长度不一样,向量序列的大小就不一样)。
2024-10-06 15:14:40
1470
原创 李宏毅深度学习-循环神经网络RNN
在RNN 里面,每一次隐藏层的神经元产生输出的时候,该输出会被存到记忆元(memory cell),图5.6(a) 中的蓝色方块表示 记忆元。下一次有输入时,这些神经元不仅会考虑输入x1, x2,还会考虑存到记忆元里的值。除了x1, x2,存在记忆元里的值a1, a2 也会影响神经网络的输出。记忆元可简称为单元(cell),记忆元的值也可称为隐状态(hidden state)。举个例子,假设图5.6(b) 中的神经网络所有的权重都是1,所有的神经元没有任何的偏置(bias)。
2024-10-04 14:58:48
1250
原创 动手学深度学习(李沐)PyTorch 第 7 章 现代卷积神经网络
在计算机视觉中,直接将神经网络与其他机器学习方法进行比较也许不公平。这是因为,卷积神经网络的输入是由原始像素值或是经过简单预处理(例如居中、缩放)的像素值组成的。但在使用传统机器学习方法时,从业者永远不会将原始像素作为输入。在传统机器学习方法中,计算机视觉流水线是由经过人的手工精心设计的特征流水线组成的。对于这些传统方法,大部分的进展都来自于对特征有了更聪明的想法,并且学习到的算法往往归于事后的解释。虽然上世纪90年代就有了一些神经网络加速卡,但仅靠它们还不足以开发出有大量参数的深层多通道多层卷积神经网络。
2024-10-03 19:01:05
1369
1
原创 李宏毅深度学习-梯度下降和Batch Normalization批量归一化
▽ -> 梯度gradient -> vector向量 -> 下图中的红色箭头(loss等高线的法线方向)
2024-10-02 20:45:54
893
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅