§1.4 无穷小与无穷大
在数列极限和函数极限的研究中,存在两个特殊的极限情况:极限为 ∞ \infty ∞以及极限为 0 0 0,这便是本节着重探讨的无穷大量和无穷小量。
一、无穷大量
观察以下极限: lim n → ∞ n 2 = + ∞ \lim_{n\rightarrow\infty} n^2 = +\infty limn→∞n2=+∞; lim x → + ∞ x = + ∞ \lim_{x\rightarrow+\infty}\sqrt{x}=+\infty limx→+∞x=+∞; lim x → 1 1 x − 1 = ∞ \lim_{x\rightarrow 1}\frac{1}{x - 1}=\infty limx→1x−11=∞; lim x → 0 + ln x = − ∞ \lim_{x\rightarrow 0^{+}}\ln x=-\infty limx→0+lnx=−∞。
这些极限从严格意义上讲并不存在,但它们与像 lim n → ∞ ( − 1 ) n \lim_{n\rightarrow\infty}(-1)^n limn→∞(−1)n、 lim x → ∞ e x \lim_{x\rightarrow\infty} e^x limx→∞ex这类极限不存在的情况有所不同。后者数列或函数的变化毫无规律可言,没有明确的变化趋势,属于纯粹的不存在;而前者中数列或函数的绝对值呈现出无限增大的趋势,这种情况我们认为是有变化趋势的。基于此,我们把这类数列或函数定义为无穷大量,即极限为无穷大(包括 + ∞ +\infty +∞、 − ∞ -\infty −∞、 ∞ \infty ∞ )的变量称为无穷大量 。
定义:当自变量呈现某种变化趋势时,如果数列或函数的绝对值不断无限增大,那么该数列或函数(统称为变量)就被称作当自变量在这种变化趋势下的无穷大量。
例如:
- n 2 n^2 n2在 n → ∞ n\rightarrow\infty n→∞时,其值不断增大且绝对值无限增大,所以 n 2 n^2 n2是当 n → ∞ n\rightarrow\infty n→∞时的无穷大量;
- 当 x → + ∞ x\rightarrow+\infty x→+∞时, x \sqrt{x} x的值持续增大,绝对值也无限增大,故 x \sqrt{x} x是当 x → + ∞ x\rightarrow+\infty x→+∞时的无穷大量;
- 当 x x x趋近于 1 1 1时, 1 x − 1 \frac{1}{x - 1} x−11的绝对值无限增大,因此 1 x − 1 \frac{1}{x - 1} x−11是当 x → 1 x\rightarrow 1 x→1时的无穷大量;
- 当 x x x从右侧趋近于 0 0 0(即 x → 0 + x\rightarrow 0^{+} x→0+)时, ln x \ln x lnx的值不断减小且绝对值无限增大,所以 ln x \ln x lnx是当 x → 0 + x\rightarrow 0^{+} x→0+时的无穷大量。
注:
- 1 ∘ 1^{\circ} 1∘ 无穷大量并非一个数值极大的常数,而是极限趋向于无穷大的变量(可以是数列,也可以是函数)。比如,无论多大的具体数字,像 1 0 100 10^{100} 10100,它都是一个确定的值,不是无穷大量。
- 2 ∘ 2^{\circ} 2∘ 在描述某个变量是无穷大量时,必须明确指出自变量的变化趋势。例如, 1 x − 1 \frac{1}{x - 1} x−11在 x → 1 x\rightarrow 1 x→1时是无穷大量,因为当 x x x趋近于 1 1 1时,其绝对值会无限增大;但当 x → 2 x\rightarrow 2 x→2时, lim x → 2 1 x − 1 = 1 \lim_{x\rightarrow 2}\frac{1}{x - 1}=1 limx→2x−11=1 ,此时它就不是无穷大量了。
-
3
∘
3^{\circ}
3∘ 无穷大量与无界量存在区别:
- ① 无穷大量必然是无界量。例如, n 2 n^2 n2在 n → ∞ n\rightarrow\infty n→∞时是无穷大量,同时对于任意给定的正数 M M M,当 n > M n > \sqrt{M} n>M时, n 2 > M n^2 > M n2>M,所以 n 2 n^2 n2也是无界量。
- ② 无界量却不一定是无穷大量。因为无界量的极限不一定是 ∞ \infty ∞,有可能极限根本不存在。比如函数 f ( n ) = { n , n 为奇数 1 n , n 为偶数 f(n)=\begin{cases}n, & n为奇数\\\frac{1}{n}, & n为偶数\end{cases} f(n)={n,n1,n为奇数n为偶数,当 n n n为奇数时, f ( n ) f(n) f(n)的值可以无限增大,所以该变量是无界的,但由于其值在奇数项和偶数项之间波动,极限不存在(属于纯粹的不存在),因此它不是无穷大量。
二、无穷小量
分析下列变量的极限:
lim
n
→
∞
1
n
2
=
0
\lim_{n\rightarrow\infty}\frac{1}{n^2}=0
limn→∞n21=0;
lim
x
→
+
∞
1
x
=
0
\lim_{x\rightarrow+\infty}\frac{1}{\sqrt{x}}=0
limx→+∞x1=0;
lim
x
→
1
(
x
−
1
)
=
0
\lim_{x\rightarrow 1}(x - 1)=0
limx→1(x−1)=0;
lim
x
→
0
+
x
=
0
\lim_{x\rightarrow 0^{+}}\sqrt{x}=0
limx→0+x=0
上述这些变量的极限均为 0 0 0,像这类极限值为 0 0 0的变量,我们将其定义为无穷小量。
1.定义
当自变量有某种变化趋势时,如果数列或函数的极限为 0 0 0,那么该数列或函数(统称为变量)就被称为在自变量这种变化趋势下的无穷小量。
注:
- 1 ∘ 1^{\circ} 1∘ 无穷小量不是一个数值极小的常数,而是极限为 0 0 0的变量(数列或函数)。比如 0.00001 0.00001 0.00001是一个确定的常数,不是无穷小量,而当 x → 0 x\rightarrow 0 x→0时, x x x就是无穷小量。
- 2 ∘ 2^{\circ} 2∘ 同样,在说明某个变量是无穷小量时,一定要明确自变量的变化趋势。例如, x − 1 x - 1 x−1在 x → 1 x\rightarrow 1 x→1时,极限为 0 0 0,所以它是当 x → 1 x\rightarrow 1 x→1时的无穷小量;但当 x → 2 x\rightarrow 2 x→2时, lim x → 2 ( x − 1 ) = 1 \lim_{x\rightarrow 2}(x - 1)=1 limx→2(x−1)=1,此时 ( x − 1 ) (x - 1) (x−1)就不是无穷小量了。
- 3 ∘ 3^{\circ} 3∘ “ 0 0 0”是唯一可以被看作无穷小量的常数。因为对于常数函数 y = 0 y = 0 y=0,无论自变量如何变化,其极限始终为 0 0 0。
2. 无穷小量的性质
(1) 无穷小量与有界变量的乘积仍是无穷小量
证明:假设 α ( x ) \alpha(x) α(x)是当 x → x 0 x\rightarrow x_0 x→x0时的无穷小量,即 lim x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limx→x0α(x)=0。这意味着对于任意给定的正数 ε \varepsilon ε,都存在一个正数 δ 1 \delta_1 δ1,当 0 < ∣ x − x 0 ∣ < δ 1 0 < |x - x_0| < \delta_1 0<∣x−x0∣<δ1时,有 ∣ α ( x ) − 0 ∣ = ∣ α ( x ) ∣ < ε |\alpha(x)-0| = |\alpha(x)| < \varepsilon ∣α(x)−0∣=∣α(x)∣<ε成立。
又设 β ( x ) \beta(x) β(x)是一个有界变量,即存在正数 M M M,使得对于所有的 x x x(在某个定义域内),都有 ∣ β ( x ) ∣ ≤ M |\beta(x)|\leq M ∣β(x)∣≤M。
那么,对于任意给定的正数
ε
\varepsilon
ε,取
δ
=
δ
1
\delta = \delta_1
δ=δ1,当
0
<
∣
x
−
x
0
∣
<
δ
0 < |x - x_0| < \delta
0<∣x−x0∣<δ时,有:
∣
α
(
x
)
⋅
β
(
x
)
−
0
∣
=
∣
α
(
x
)
⋅
β
(
x
)
∣
=
∣
α
(
x
)
∣
⋅
∣
β
(
x
)
∣
<
M
ε
|\alpha(x)\cdot\beta(x)-0| = |\alpha(x)\cdot\beta(x)| = |\alpha(x)|\cdot|\beta(x)| < M\varepsilon
∣α(x)⋅β(x)−0∣=∣α(x)⋅β(x)∣=∣α(x)∣⋅∣β(x)∣<Mε。
根据极限的定义, lim x → x 0 α ( x ) ⋅ β ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)\cdot\beta(x)=0 limx→x0α(x)⋅β(x)=0,所以 α ( x ) ⋅ β ( x ) \alpha(x)\cdot\beta(x) α(x)⋅β(x)是当 x → x 0 x\rightarrow x_0 x→x0时的无穷小量,得证。
注:因为常数可以看作是有界变量(其绝对值不超过自身绝对值),所以无穷小量与常数的乘积仍是无穷小量。例如:对于函数 y = x sin 1 x y = x\sin\frac{1}{x} y=xsinx1,当 x → 0 x\rightarrow 0 x→0时, x x x是无穷小量,而 sin 1 x \sin\frac{1}{x} sinx1是有界变量(因为 ∣ sin 1 x ∣ ≤ 1 |\sin\frac{1}{x}|\leq 1 ∣sinx1∣≤1),所以根据上述性质, lim x → 0 x sin 1 x = 0 \lim_{x\rightarrow 0} x\sin\frac{1}{x}=0 limx→0xsinx1=0。
(2) 两个无穷小量的代数和仍是无穷小量
证明:已知 lim x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limx→x0α(x)=0, lim x → x 0 β ( x ) = 0 \lim_{x\rightarrow x_0}\beta(x)=0 limx→x0β(x)=0。
根据极限的运算法则,对于两个极限都存在的函数,它们的和(差)的极限等于极限的和(差)。所以 lim x → x 0 ( α ( x ) ± β ( x ) ) = lim x → x 0 α ( x ) ± lim x → x 0 β ( x ) = 0 ± 0 = 0 \lim_{x\rightarrow x_0}(\alpha(x)\pm\beta(x))=\lim_{x\rightarrow x_0}\alpha(x)\pm\lim_{x\rightarrow x_0}\beta(x)=0\pm0 = 0 limx→x0(α(x)±β(x))=limx→x0α(x)±limx→x0β(x)=0±0=0,即证两个无穷小量的代数和仍是无穷小量。
注:此性质可以推广到有限多个无穷小量的情况。即若 α 1 ( x ) , α 2 ( x ) , ⋯ , α n ( x ) \alpha_1(x),\alpha_2(x),\cdots,\alpha_n(x) α1(x),α2(x),⋯,αn(x)都是当 x → x 0 x\rightarrow x_0 x→x0时的无穷小量,那么 α 1 ( x ) ± α 2 ( x ) ± ⋯ ± α n ( x ) \alpha_1(x)\pm\alpha_2(x)\pm\cdots\pm\alpha_n(x) α1(x)±α2(x)±⋯±αn(x)也是当 x → x 0 x\rightarrow x_0 x→x0时的无穷小量。
(3) 两个无穷小量的乘积仍是无穷小量
证明:因为 lim x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limx→x0α(x)=0, lim x → x 0 β ( x ) = 0 \lim_{x\rightarrow x_0}\beta(x)=0 limx→x0β(x)=0。
根据极限的乘法运算法则,两个极限都为 0 0 0的函数,它们乘积的极限为 0 0 0,即 lim x → x 0 α ( x ) ⋅ β ( x ) = lim x → x 0 α ( x ) ⋅ lim x → x 0 β ( x ) = 0 × 0 = 0 \lim_{x\rightarrow x_0}\alpha(x)\cdot\beta(x)=\lim_{x\rightarrow x_0}\alpha(x)\cdot\lim_{x\rightarrow x_0}\beta(x)=0\times0 = 0 limx→x0α(x)⋅β(x)=limx→x0α(x)⋅limx→x0β(x)=0×0=0,所以两个无穷小量的乘积仍是无穷小量。
注:该性质同样可以推广到有限多个无穷小量的乘积。即有限多个无穷小量的乘积仍是无穷小量。
特别需要注意的是,两个无穷小量的商是一个未定式,其极限值不能确定,通常称为 0 0 \frac{0}{0} 00型。后续会专门研究这类极限的求解方法。
3. 函数与极限值的关系
定理: lim x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x)=A limx→x0f(x)=A的充分必要条件是 f ( x ) = A + α ( x ) f(x)=A+\alpha(x) f(x)=A+α(x),其中 lim x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limx→x0α(x)=0,也就是 α ( x ) \alpha(x) α(x)是无穷小量。
证明:
- 必要性:已知 lim x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x)=A limx→x0f(x)=A,根据极限的性质, lim x → x 0 ( f ( x ) − A ) = 0 \lim_{x\rightarrow x_0}(f(x)-A)=0 limx→x0(f(x)−A)=0。这表明 f ( x ) − A f(x)-A f(x)−A是当 x → x 0 x\rightarrow x_0 x→x0时的无穷小量,我们记 f ( x ) − A = α ( x ) f(x)-A=\alpha(x) f(x)−A=α(x),那么就有 f ( x ) = A + α ( x ) f(x)=A+\alpha(x) f(x)=A+α(x),且 lim x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limx→x0α(x)=0 。
- 充分性:若 f ( x ) = A + α ( x ) f(x)=A+\alpha(x) f(x)=A+α(x),并且 lim x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limx→x0α(x)=0。对等式两边同时求极限,根据极限的加法运算法则, lim x → x 0 f ( x ) = lim x → x 0 ( A + α ( x ) ) = A + lim x → x 0 α ( x ) \lim_{x\rightarrow x_0} f(x)=\lim_{x\rightarrow x_0}(A+\alpha(x))=A+\lim_{x\rightarrow x_0}\alpha(x) limx→x0f(x)=limx→x0(A+α(x))=A+limx→x0α(x)。因为 lim x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limx→x0α(x)=0,所以 lim x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x)=A limx→x0f(x)=A,证毕。
4. 无穷小量与无穷大量的关系
定理:在自变量 x x x的同一变化过程中,如果 f ( x ) f(x) f(x)是无穷大量,那么 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷小量;反之,若 f ( x ) f(x) f(x)是无穷小量,并且 f ( x ) ≠ 0 f(x)\neq 0 f(x)=0,那么 1 f ( x ) \frac{1}{f(x)} f(x)1为无穷大量。
证明:
- (1) 假设 lim x → x 0 f ( x ) = ∞ \lim_{x\rightarrow x_0} f(x)=\infty limx→x0f(x)=∞。这意味着对于任意给定的正数 ε \varepsilon ε,取 M = 1 ε > 0 M = \frac{1}{\varepsilon}>0 M=ε1>0,一定存在正数 δ \delta δ,当 x x x满足 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ时,有 ∣ f ( x ) ∣ > M = 1 ε |f(x)|>M=\frac{1}{\varepsilon} ∣f(x)∣>M=ε1。两边同时取倒数,可得 ∣ 1 f ( x ) ∣ < ε |\frac{1}{f(x)}|<\varepsilon ∣f(x)1∣<ε。根据极限的定义, lim x → x 0 1 f ( x ) = 0 \lim_{x\rightarrow x_0}\frac{1}{f(x)}=0 limx→x0f(x)1=0,所以 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷小量。
- (2) 假设 lim x → x 0 f ( x ) = 0 \lim_{x\rightarrow x_0} f(x)=0 limx→x0f(x)=0,且 f ( x ) ≠ 0 f(x)\neq 0 f(x)=0。对于任意给定的正数 M M M,取 ε = 1 M > 0 \varepsilon=\frac{1}{M}>0 ε=M1>0,因为 lim x → x 0 f ( x ) = 0 \lim_{x\rightarrow x_0} f(x)=0 limx→x0f(x)=0,所以存在正数 δ \delta δ,当 x x x满足 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ时,有 ∣ f ( x ) ∣ < ε = 1 M |f(x)|<\varepsilon=\frac{1}{M} ∣f(x)∣<ε=M1。两边同时取倒数,可得 ∣ 1 f ( x ) ∣ > M |\frac{1}{f(x)}|>M ∣f(x)1∣>M。根据极限的定义, lim x → x 0 1 f ( x ) = ∞ \lim_{x\rightarrow x_0}\frac{1}{f(x)}=\infty limx→x0f(x)1=∞,所以 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷大量。
注:在自变量 x x x的同一变化过程中,可以简单地理解为无穷小量(非零)与无穷大量互为倒数关系。
5. 曲线的渐近线
对于部分函数,当定义域和值域为无限区间时,其图像会朝着无穷远处延伸。在这个过程中,曲线会呈现出越来越靠近某一直线的形态,这条直线就被称为曲线的渐近线。
(1) 渐近线的定义
如果曲线上的一点沿着曲线向无穷远处移动时,该点与某条直线的距离逐渐趋近于 0 0 0,那么这条直线就被称作曲线的一条渐近线。
(2) 渐近线的求法
- ① 斜渐近线
y
=
k
x
+
b
y=kx + b
y=kx+b
曲线 y = f ( x ) y = f(x) y=f(x)上有一动点 P ( x , y ) P(x, y) P(x,y),根据点到直线的距离公式 d = ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 d=\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} d=A2+B2∣Ax0+By0+C∣,对于直线 y = k x + b y = kx + b y=kx+b(可变形为 k x − y + b = 0 kx - y + b = 0 kx−y+b=0),则点 P P P到该直线的距离为 d = ∣ k x − y + b ∣ 1 + k 2 = ∣ f ( x ) − ( k x − b ) ∣ 1 + k 2 d=\frac{|kx - y + b|}{\sqrt{1 + k^2}}=\frac{|f(x)-(kx - b)|}{\sqrt{1 + k^2}} d=1+k2∣kx−y+b∣=1+k2∣f(x)−(kx−b)∣。
若 lim x → ± ∞ d = lim x → ± ∞ ∣ f ( x ) − ( k x − b ) ∣ 1 + k 2 = 0 \lim_{x\rightarrow\pm\infty} d=\lim_{x\rightarrow\pm\infty}\frac{|f(x)-(kx - b)|}{\sqrt{1 + k^2}}=0 limx→±∞d=limx→±∞1+k2∣f(x)−(kx−b)∣=0,则意味着 lim x → ± ∞ ∣ f ( x ) − ( k x − b ) ∣ = 0 \lim_{x\rightarrow\pm\infty}|f(x)-(kx - b)|=0 limx→±∞∣f(x)−(kx−b)∣=0 。
通过特定的公式(通常是 lim x → ± ∞ f ( x ) x = k \lim_{x\rightarrow\pm\infty}\frac{f(x)}{x}=k limx→±∞xf(x)=k, lim x → ± ∞ ( f ( x ) − k x ) = b \lim_{x\rightarrow\pm\infty}(f(x)-kx)=b limx→±∞(f(x)−kx)=b )分别求出 k k k和 b b b的值,再将其代入 y = k x + b y = kx + b y=kx+b,即可得到斜渐近线方程。
- ② 水平渐近线
y
=
b
y = b
y=b
当斜渐近线 y = k x + b y = kx + b y=kx+b中的斜率 k = 0 k = 0 k=0时,就得到了水平渐近线 y = b y = b y=b。其中 b = lim x → ± ∞ f ( x ) b = \lim_{x\rightarrow\pm\infty} f(x) b=limx→±∞f(x),即当 x x x趋向于正无穷或负无穷时,函数 f ( x ) f(x) f(x)的极限值。 - ③ 铅锤渐近线
与 x x x轴垂直的渐近线 x = c x = c x=c被称为铅锤渐近线,其中 c c c满足 lim x → c f ( x ) = ∞ ( + ∞ , − ∞ ) \lim_{x\rightarrow c} f(x)=\infty(+\infty,-\infty) limx→cf(x)=∞(+∞,−∞) 。也就是说,当 x x x趋近于 c c c时,函数 f ( x ) f(x) f(x)的极限为无穷大。
例1:求 y = x 2 x + 1 y=\frac{x^2}{x + 1} y=x+1x2的渐近线。
-
解:
- 斜渐近线:
- 先求 k k k, lim x → ∞ x 2 x + 1 x = lim x → ∞ x 2 x ( x + 1 ) = lim x → ∞ x x + 1 = 1 \lim_{x\rightarrow\infty}\frac{\frac{x^2}{x + 1}}{x}=\lim_{x\rightarrow\infty}\frac{x^2}{x(x + 1)}=\lim_{x\rightarrow\infty}\frac{x}{x + 1}=1 limx→∞xx+1x2=limx→∞x(x+1)x2=limx→∞x+1x=1。
- 再求 b b b, lim x → ∞ ( x 2 x + 1 − x ) = lim x → ∞ x 2 − x ( x + 1 ) x + 1 = lim x → ∞ x 2 − x 2 − x x + 1 = lim x → ∞ − x x + 1 = − 1 \lim_{x\rightarrow\infty}(\frac{x^2}{x + 1}-x)=\lim_{x\rightarrow\infty}\frac{x^2 - x(x + 1)}{x + 1}=\lim_{x\rightarrow\infty}\frac{x^2 - x^2 - x}{x + 1}=\lim_{x\rightarrow\infty}\frac{-x}{x + 1}=-1 limx→∞(x+1x2−x)=limx→∞x+1x2−x(x+1)=limx→∞x+1x2−x2−x=limx→∞x+1−x=−1。所以斜渐近线为 y = x − 1 y = x - 1 y=x−1。
- 铅锤渐近线:令 x + 1 = 0 x + 1 = 0 x+1=0,解得 x = − 1 x=-1 x=−1。当 x → − 1 x\rightarrow - 1 x→−1时, lim x → − 1 x 2 x + 1 = ∞ \lim_{x\rightarrow - 1}\frac{x^2}{x + 1}=\infty limx→−1x+1x2=∞,所以 x = − 1 x=-1 x=−1是铅锤渐近线。
- 斜渐近线:
-
例2:求曲线 y = 2 x + 2 π arctan x y = 2x+\frac{2}{\pi}\arctan x y=2x+π2arctanx的渐近线。
- 解:
- 斜渐近线:
- ▪ 求 k k k, lim x → ∞ 2 x + 2 π arctan x x = lim x → ∞ ( 2 + 2 π arctan x x ) = 2 \lim_{x\rightarrow\infty}\frac{2x+\frac{2}{\pi}\arctan x}{x}=\lim_{x\rightarrow\infty}(2+\frac{2}{\pi}\frac{\arctan x}{x}) = 2 limx→∞x2x+π2arctanx=limx→∞(2+π2xarctanx)=2(因为 lim x → ∞ arctan x x = 0 \lim_{x\rightarrow\infty}\frac{\arctan x}{x}=0 limx→∞xarctanx=0, arctan x \arctan x arctanx的值域是 ( − π 2 , π 2 ) (-\frac{\pi}{2},\frac{\pi}{2}) (−2π,2π),当 x x x趋于无穷时, arctan x x \frac{\arctan x}{x} xarctanx趋于 0 0 0 )。
- ▪ 求 b b b, lim x → ∞ ( 2 x + 2 π arctan x − 2 x ) = lim x → ∞ 2 π arctan x = 2 π × π 2 = 1 \lim_{x\rightarrow\infty}(2x+\frac{2}{\pi}\arctan x - 2x)=\lim_{x\rightarrow\infty}\frac{2}{\pi}\arctan x=\frac{2}{\pi}×\frac{\pi}{2}= 1 limx→∞(2x+π2arctanx−2x)=limx→∞π2arctanx=π2×2π=1(当 x → + ∞ x\rightarrow +\infty x→+∞时, arctan x → π 2 \arctan x\rightarrow\frac{\pi}{2} arctanx→2π )。所以斜渐近线为 y = 2 x + 1 y = 2x + 1 y=2x+1。
- 水平渐近线:因为已经求出斜渐近线的斜率 k = 2 ≠ 0 k = 2\neq0 k=2=0,所以该曲线不存在水平渐近线。
- 铅锤渐近线:由于对于任意实数 c c c, lim x → c ( 2 x + 2 π arctan x ) \lim_{x\rightarrow c}(2x+\frac{2}{\pi}\arctan x) limx→c(2x+π2arctanx)都不会趋于无穷大,所以该曲线不存在铅锤渐近线。
- 斜渐近线:
- 解:
作业与参考答案
-
当 n → ∞ n\rightarrow\infty n→∞时,判断下列数列是否为无穷小:
- (1)
x
n
=
1
2
n
x_n=\frac{1}{2^n}
xn=2n1
- 解:因为 lim n → ∞ 1 2 n = 0 \lim_{n\rightarrow\infty}\frac{1}{2^n}=0 limn→∞2n1=0(指数函数 y = a n y = a^n y=an,当 0 < a < 1 0 < a < 1 0<a<1时, n → ∞ n\rightarrow\infty n→∞, y → 0 y\rightarrow0 y→0,这里 a = 1 2 a=\frac{1}{2} a=21 ),所以 x n = 1 2 n x_n=\frac{1}{2^n} xn=2n1是当 n → ∞ n\rightarrow\infty n→∞时的无穷小。
- (2)
x
n
=
n
n
+
1
x_n=\frac{n}{n + 1}
xn=n+1n
- 解: lim n → ∞ n n + 1 = lim n → ∞ 1 1 + 1 n = 1 \lim_{n\rightarrow\infty}\frac{n}{n + 1}=\lim_{n\rightarrow\infty}\frac{1}{1+\frac{1}{n}} = 1 limn→∞n+1n=limn→∞1+n11=1(分子分母同时除以 n n n ),所以 x n = n n + 1 x_n=\frac{n}{n + 1} xn=n+1n不是当 n → ∞ n\rightarrow\infty n→∞时的无穷小。
- (3)
x
n
=
1
+
(
−
1
)
n
n
x_n=\frac{1+(-1)^n}{n}
xn=n1+(−1)n
- 解: ∣ 1 + ( − 1 ) n n ∣ ≤ 1 + 1 n = 2 n \left|\frac{1+(-1)^n}{n}\right|\leq\frac{1 + 1}{n}=\frac{2}{n} n1+(−1)n ≤n1+1=n2,而 lim n → ∞ 2 n = 0 \lim_{n\rightarrow\infty}\frac{2}{n}=0 limn→∞n2=0,根据夹逼准则, lim n → ∞ 1 + ( − 1 ) n n = 0 \lim_{n\rightarrow\infty}\frac{1+(-1)^n}{n}=0 limn→∞n1+(−1)n=0,所以 x n = 1 + ( − 1 ) n n x_n=\frac{1+(-1)^n}{n} xn=n1+(−1)n是当 n → ∞ n\rightarrow\infty n→∞时的无穷小。
- (4)
x
n
=
(
n
−
1
)
2
n
+
1
x_n=\frac{(n - 1)^2}{n + 1}
xn=n+1(n−1)2
- 解: lim n → ∞ ( n − 1 ) 2 n + 1 = lim n → ∞ n 2 − 2 n + 1 n + 1 = lim n → ∞ n − 2 + 1 n 1 + 1 n = ∞ \lim_{n\rightarrow\infty}\frac{(n - 1)^2}{n + 1}=\lim_{n\rightarrow\infty}\frac{n^2 - 2n + 1}{n + 1}=\lim_{n\rightarrow\infty}\frac{n - 2+\frac{1}{n}}{1+\frac{1}{n}}=\infty limn→∞n+1(n−1)2=limn→∞n+1n2−2n+1=limn→∞1+n1n−2+n1=∞(分子分母同时除以 n n n ),所以 x n = ( n − 1 ) 2 n + 1 x_n=\frac{(n - 1)^2}{n + 1} xn=n+1(n−1)2不是当 n → ∞ n\rightarrow\infty n→∞时的无穷小。
- (5)
x
n
=
{
n
2
+
n
n
,
n
为奇数
1
n
,
n
为偶数
x_n=\begin{cases}\frac{n^2+\sqrt{n}}{n}, & n\text{为奇数}\\\frac{1}{n}, & n\text{为偶数}\end{cases}
xn={nn2+n,n1,n为奇数n为偶数
- 解:当 n n n为偶数时, lim n → ∞ 1 n = 0 \lim_{n\rightarrow\infty}\frac{1}{n}=0 limn→∞n1=0;当 n n n为奇数时, lim n → ∞ n 2 + n n = lim n → ∞ ( n + 1 n ) = ∞ \lim_{n\rightarrow\infty}\frac{n^2+\sqrt{n}}{n}=\lim_{n\rightarrow\infty}(n + \frac{1}{\sqrt{n}})=\infty limn→∞nn2+n=limn→∞(n+n1)=∞。因为奇数项极限不为 0 0 0,所以 x n x_n xn不是当 n → ∞ n\rightarrow\infty n→∞时的无穷小。
- (1)
x
n
=
1
2
n
x_n=\frac{1}{2^n}
xn=2n1
-
当 x → 0 x\rightarrow 0 x→0时,判断下列变量哪些是无穷小,哪些是无穷大:
100 x 2 100x^{2} 100x2, x 3 \sqrt [3]{x} 3x, x + 1 \sqrt {x+1} x+1, 2 x \frac {2} {x} x2, x x 2 \frac {x} {x^{2}} x2x, x 2 x \frac {x^{2}} {x} xx2, 0 0 0, x 2 + 0.01 x^{2}+0.01 x2+0.01, 1 x − 1 \frac {1} {x-1} x−11, x 2 + x 2 x^{2}+\frac {x} {2} x2+2x, x − 1 x + 1 \frac {x-1} {x+1} x+1x−1- 100 x 2 100x^2 100x2: lim x → 0 100 x 2 = 0 \lim_{x\rightarrow 0}100x^2 = 0 limx→0100x2=0,所以 100 x 2 100x^2 100x2是当 x → 0 x\rightarrow 0 x→0时的无穷小。
- x 3 \sqrt[3]{x} 3x: lim x → 0 x 3 = 0 \lim_{x\rightarrow 0}\sqrt[3]{x}=0 limx→03x=0,所以 x 3 \sqrt[3]{x} 3x是当 x → 0 x\rightarrow 0 x→0时的无穷小。
- x + 1 \sqrt{x + 1} x+1: lim x → 0 x + 1 = 0 + 1 = 1 \lim_{x\rightarrow 0}\sqrt{x + 1}=\sqrt{0 + 1}=1 limx→0x+1=0+1=1,所以 x + 1 \sqrt{x + 1} x+1既不是无穷小也不是无穷大。
- 2 x \frac{2}{x} x2: lim x → 0 2 x = ∞ \lim_{x\rightarrow 0}\frac{2}{x}=\infty limx→0x2=∞(当 x → 0 + x\rightarrow 0^+ x→0+时, 2 x → + ∞ \frac{2}{x}\rightarrow +\infty x2→+∞;当 x → 0 − x\rightarrow 0^- x→0−时, 2 x → − ∞ \frac{2}{x}\rightarrow -\infty x2→−∞ ),所以 2 x \frac{2}{x} x2是当 x → 0 x\rightarrow 0 x→0时的无穷大。
- x x 2 = 1 x \frac{x}{x^2}=\frac{1}{x} x2x=x1: lim x → 0 1 x = ∞ \lim_{x\rightarrow 0}\frac{1}{x}=\infty limx→0x1=∞(同理,当 x → 0 + x\rightarrow 0^+ x→0+时, 1 x → + ∞ \frac{1}{x}\rightarrow +\infty x1→+∞;当 x → 0 − x\rightarrow 0^- x→0−时, 1 x → − ∞ \frac{1}{x}\rightarrow -\infty x1→−∞ ),所以 x x 2 \frac{x}{x^2} x2x是当 x → 0 x\rightarrow 0 x→0时的无穷大。
- x 2 x = x \frac{x^2}{x}=x xx2=x: lim x → 0 x = 0 \lim_{x\rightarrow 0}x = 0 limx→0x=0,所以 x 2 x \frac{x^2}{x} xx2是当 x → 0 x\rightarrow 0 x→0时的无穷小。
- 0 0 0:常数 0 0 0是无穷小量,所以 0 0 0是当 x → 0 x\rightarrow 0 x→0时的无穷小。
- x 2 + 0.01 x^2 + 0.01 x2+0.01: lim x → 0 ( x 2 + 0.01 ) = 0 + 0.01 = 0.01 \lim_{x\rightarrow 0}(x^2 + 0.01)=0 + 0.01 = 0.01 limx→0(x2+0.01)=0+0.01=0.01,所以 x 2 + 0.01 x^2 + 0.01 x2+0.01既不是无穷小也不是无穷大。
- 1 x − 1 \frac{1}{x - 1} x−11: lim x → 0 1 x − 1 = 1 0 − 1 = − 1 \lim_{x\rightarrow 0}\frac{1}{x - 1}=\frac{1}{0 - 1}=-1 limx→0x−11=0−11=−1,所以 1 x − 1 \frac{1}{x - 1} x−11既不是无穷小也不是无穷大。
- x 2 + x 2 x^2+\frac{x}{2} x2+2x: lim x → 0 ( x 2 + x 2 ) = 0 + 0 = 0 \lim_{x\rightarrow 0}(x^2+\frac{x}{2})=0 + 0 = 0 limx→0(x2+2x)=0+0=0,所以 x 2 + x 2 x^2+\frac{x}{2} x2+2x是当 x → 0 x\rightarrow 0 x→0时的无穷小。
- x − 1 x + 1 \frac{x - 1}{x + 1} x+1x−1: lim x → 0 x − 1 x + 1 = 0 − 1 0 + 1 = − 1 \lim_{x\rightarrow 0}\frac{x - 1}{x + 1}=\frac{0 - 1}{0 + 1}=-1 limx→0x+1x−1=0+10−1=−1,所以 x − 1 x + 1 \frac{x - 1}{x + 1} x+1x−1既不是无穷小也不是无穷大。
-
计算下列极限:
- (1)
lim
x
→
∞
x
2
+
1
x
3
+
x
(
3
+
cos
x
)
\lim_{x\rightarrow\infty}\frac{x^2 + 1}{x^3 + x}(3+\cos x)
limx→∞x3+xx2+1(3+cosx)
- 解:因为 ∣ cos x ∣ ≤ 1 |\cos x|\leq1 ∣cosx∣≤1,所以 2 ≤ 3 + cos x ≤ 4 2\leq3+\cos x\leq4 2≤3+cosx≤4, 3 + cos x 3+\cos x 3+cosx是有界函数。
- 又因为 lim x → ∞ x 2 + 1 x 3 + x = lim x → ∞ 1 x + 1 x 3 1 + 1 x 2 = 0 \lim_{x\rightarrow\infty}\frac{x^2 + 1}{x^3 + x}=\lim_{x\rightarrow\infty}\frac{\frac{1}{x}+\frac{1}{x^3}}{1+\frac{1}{x^2}} = 0 limx→∞x3+xx2+1=limx→∞1+x21x1+x31=0(分子分母同时除以 x 3 x^3 x3 )。
- 根据无穷小量与有界变量的乘积仍是无穷小量,所以 lim x → ∞ x 2 + 1 x 3 + x ( 3 + cos x ) = 0 \lim_{x\rightarrow\infty}\frac{x^2 + 1}{x^3 + x}(3+\cos x)=0 limx→∞x3+xx2+1(3+cosx)=0。
- (2)
lim
x
→
∞
sin
x
2
+
x
cos
2
x
−
x
\lim_{x\rightarrow\infty}\frac{\sin x^2 + x}{\cos^2x - x}
limx→∞cos2x−xsinx2+x
- 解:分子分母同时除以 x x x,得到 lim x → ∞ sin x 2 x + 1 cos 2 x x − 1 \lim_{x\rightarrow\infty}\frac{\frac{\sin x^2}{x}+1}{\frac{\cos^2x}{x}-1} limx→∞xcos2x−1xsinx2+1。
- 因为 ∣ sin x 2 ∣ ≤ 1 |\sin x^2|\leq1 ∣sinx2∣≤1,所以 lim x → ∞ sin x 2 x = 0 \lim_{x\rightarrow\infty}\frac{\sin x^2}{x}=0 limx→∞xsinx2=0;同理 lim x → ∞ cos 2 x x = 0 \lim_{x\rightarrow\infty}\frac{\cos^2x}{x}=0 limx→∞xcos2x=0 。
- 则 lim x → ∞ sin x 2 x + 1 cos 2 x x − 1 = 0 + 1 0 − 1 = − 1 \lim_{x\rightarrow\infty}\frac{\frac{\sin x^2}{x}+1}{\frac{\cos^2x}{x}-1}=\frac{0 + 1}{0 - 1}=-1 limx→∞xcos2x−1xsinx2+1=0−10+1=−1。
- (1)
lim
x
→
∞
x
2
+
1
x
3
+
x
(
3
+
cos
x
)
\lim_{x\rightarrow\infty}\frac{x^2 + 1}{x^3 + x}(3+\cos x)
limx→∞x3+xx2+1(3+cosx)
-
求下列曲线的渐近线:
- (1)
y
=
e
x
y = e^x
y=ex
- 解: lim x → − ∞ e x = 0 \lim_{x\rightarrow -\infty}e^x = 0 limx→−∞ex=0,所以 y = 0 y = 0 y=0是曲线 y = e x y = e^x y=ex的水平渐近线;当 x → + ∞ x\rightarrow +\infty x→+∞时, e x → + ∞ e^x\rightarrow +\infty ex→+∞,不存在斜渐近线和铅锤渐近线。
- (2)
y
=
ln
x
y=\ln x
y=lnx
- 解: lim x → 0 + ln x = − ∞ \lim_{x\rightarrow 0^{+}}\ln x=-\infty limx→0+lnx=−∞,所以 x = 0 x = 0 x=0是曲线 y = ln x y=\ln x y=lnx的铅锤渐近线;当 x → + ∞ x\rightarrow +\infty x→+∞时, lim x → + ∞ ln x x = lim x → + ∞ 1 x = 0 \lim_{x\rightarrow +\infty}\frac{\ln x}{x}=\lim_{x\rightarrow +\infty}\frac{1}{x}=0 limx→+∞xlnx=limx→+∞x1=0(利用洛必达法则,对 ln x x \frac{\ln x}{x} xlnx上下求导), lim x → + ∞ ( ln x − 0 × x ) = ∞ \lim_{x\rightarrow +\infty}(\ln x-0\times x)=\infty limx→+∞(lnx−0×x)=∞,所以不存在斜渐近线和水平渐近线。
- (3)
y
=
e
−
1
x
y = e^{-\frac{1}{x}}
y=e−x1
- 解: lim x → 0 − e − 1 x = ∞ \lim_{x\rightarrow 0^{-}}e^{-\frac{1}{x}}=\infty limx→0−e−x1=∞,所以 x = 0 x = 0 x=0是铅锤渐近线; lim x → ± ∞ e − 1 x = e 0 = 1 \lim_{x\rightarrow\pm\infty}e^{-\frac{1}{x}} = e^0 = 1 limx→±∞e−x1=e0=1,所以 y = 1 y = 1 y=1是水平渐近线;不存在斜渐近线。
- (4)
y
=
e
x
1
+
x
y=\frac{e^x}{1 + x}
y=1+xex
- 解: lim x → − 1 + e x 1 + x = ∞ \lim_{x\rightarrow -1^{+}}\frac{e^x}{1 + x}=\infty limx→−1+1+xex=∞, lim x → − 1 − e x 1 + x = − ∞ \lim_{x\rightarrow -1^{-}}\frac{e^x}{1 + x}=-\infty limx→−1−1+xex=−∞,所以 x = − 1 x = -1 x=−1是铅锤渐近线;
- 求斜渐近线, k = lim x → ∞ e x 1 + x x = lim x → ∞ e x x ( 1 + x ) = ∞ k=\lim_{x\rightarrow\infty}\frac{\frac{e^x}{1 + x}}{x}=\lim_{x\rightarrow\infty}\frac{e^x}{x(1 + x)}=\infty k=limx→∞x1+xex=limx→∞x(1+x)ex=∞(当 x → ∞ x\rightarrow\infty x→∞时, e x e^x ex增长速度远大于 x ( 1 + x ) x(1 + x) x(1+x) ),所以不存在斜渐近线;
- lim x → − ∞ e x 1 + x = 0 \lim_{x\rightarrow -\infty}\frac{e^x}{1 + x}=0 limx→−∞1+xex=0,所以 y = 0 y = 0 y=0是水平渐近线( x → − ∞ x\rightarrow -\infty x→−∞方向)。
- (5)
y
=
x
3
(
x
−
1
)
2
y=\frac{x^3}{(x - 1)^2}
y=(x−1)2x3
- 解: lim x → 1 x 3 ( x − 1 ) 2 = ∞ \lim_{x\rightarrow 1}\frac{x^3}{(x - 1)^2}=\infty limx→1(x−1)2x3=∞,所以 x = 1 x = 1 x=1是铅锤渐近线;
- 求斜渐近线, k = lim x → ∞ x 3 ( x − 1 ) 2 x = lim x → ∞ x 2 ( x − 1 ) 2 = lim x → ∞ 1 ( 1 − 1 x ) 2 = 1 k=\lim_{x\rightarrow\infty}\frac{\frac{x^3}{(x - 1)^2}}{x}=\lim_{x\rightarrow\infty}\frac{x^2}{(x - 1)^2}=\lim_{x\rightarrow\infty}\frac{1}{(1-\frac{1}{x})^2}=1 k=limx→∞x(x−1)2x3=limx→∞(x−1)2x2=limx→∞(1−x1)21=1;
- b = lim x → ∞ ( x 3 ( x − 1 ) 2 − x ) = lim x → ∞ x 3 − x ( x − 1 ) 2 ( x − 1 ) 2 = lim x → ∞ x 3 − x ( x 2 − 2 x + 1 ) ( x − 1 ) 2 = lim x → ∞ x 3 − x 3 + 2 x 2 − x ( x − 1 ) 2 = lim x → ∞ 2 x 2 − x ( x − 1 ) 2 = 2 b=\lim_{x\rightarrow\infty}(\frac{x^3}{(x - 1)^2}-x)=\lim_{x\rightarrow\infty}\frac{x^3 - x(x - 1)^2}{(x - 1)^2}=\lim_{x\rightarrow\infty}\frac{x^3 - x(x^2 - 2x + 1)}{(x - 1)^2}=\lim_{x\rightarrow\infty}\frac{x^3 - x^3 + 2x^2 - x}{(x - 1)^2}=\lim_{x\rightarrow\infty}\frac{2x^2 - x}{(x - 1)^2}=2 b=limx→∞((x−1)2x3−x)=limx→∞(x−1)2x3−x(x−1)2=limx→∞(x−1)2x3−x(x2−2x+1)=limx→∞(x−1)2x3−x3+2x2−x=limx→∞(x−1)22x2−x=2,所以斜渐近线为 y = x + 2 y = x + 2 y=x+2。
- (1)
y
=
e
x
y = e^x
y=ex