高等数学第一章---函数与极限(1.4 无穷小与无穷大)

高等数学第一章—函数与极限(1.3 函数的极限)

§1.4 无穷小与无穷大

在数列极限和函数极限的研究中,存在两个特殊的极限情况:极限为 ∞ \infty 以及极限为 0 0 0,这便是本节着重探讨的无穷大量和无穷小量。

一、无穷大量

观察以下极限: lim ⁡ n → ∞ n 2 = + ∞ \lim_{n\rightarrow\infty} n^2 = +\infty limnn2=+ lim ⁡ x → + ∞ x = + ∞ \lim_{x\rightarrow+\infty}\sqrt{x}=+\infty limx+x =+ lim ⁡ x → 1 1 x − 1 = ∞ \lim_{x\rightarrow 1}\frac{1}{x - 1}=\infty limx1x11= lim ⁡ x → 0 + ln ⁡ x = − ∞ \lim_{x\rightarrow 0^{+}}\ln x=-\infty limx0+lnx=

这些极限从严格意义上讲并不存在,但它们与像 lim ⁡ n → ∞ ( − 1 ) n \lim_{n\rightarrow\infty}(-1)^n limn(1)n lim ⁡ x → ∞ e x \lim_{x\rightarrow\infty} e^x limxex这类极限不存在的情况有所不同。后者数列或函数的变化毫无规律可言,没有明确的变化趋势,属于纯粹的不存在;而前者中数列或函数的绝对值呈现出无限增大的趋势,这种情况我们认为是有变化趋势的。基于此,我们把这类数列或函数定义为无穷大量,即极限为无穷大(包括 + ∞ +\infty + − ∞ -\infty ∞ \infty )的变量称为无穷大量 。

定义:当自变量呈现某种变化趋势时,如果数列或函数的绝对值不断无限增大,那么该数列或函数(统称为变量)就被称作当自变量在这种变化趋势下的无穷大量。

例如:

  • n 2 n^2 n2 n → ∞ n\rightarrow\infty n时,其值不断增大且绝对值无限增大,所以 n 2 n^2 n2是当 n → ∞ n\rightarrow\infty n时的无穷大量;
  • x → + ∞ x\rightarrow+\infty x+时, x \sqrt{x} x 的值持续增大,绝对值也无限增大,故 x \sqrt{x} x 是当 x → + ∞ x\rightarrow+\infty x+时的无穷大量;
  • x x x趋近于 1 1 1时, 1 x − 1 \frac{1}{x - 1} x11的绝对值无限增大,因此 1 x − 1 \frac{1}{x - 1} x11是当 x → 1 x\rightarrow 1 x1时的无穷大量;
  • x x x从右侧趋近于 0 0 0(即 x → 0 + x\rightarrow 0^{+} x0+)时, ln ⁡ x \ln x lnx的值不断减小且绝对值无限增大,所以 ln ⁡ x \ln x lnx是当 x → 0 + x\rightarrow 0^{+} x0+时的无穷大量。

  • 1 ∘ 1^{\circ} 1 无穷大量并非一个数值极大的常数,而是极限趋向于无穷大的变量(可以是数列,也可以是函数)。比如,无论多大的具体数字,像 1 0 100 10^{100} 10100,它都是一个确定的值,不是无穷大量。
  • 2 ∘ 2^{\circ} 2 在描述某个变量是无穷大量时,必须明确指出自变量的变化趋势。例如, 1 x − 1 \frac{1}{x - 1} x11 x → 1 x\rightarrow 1 x1时是无穷大量,因为当 x x x趋近于 1 1 1时,其绝对值会无限增大;但当 x → 2 x\rightarrow 2 x2时, lim ⁡ x → 2 1 x − 1 = 1 \lim_{x\rightarrow 2}\frac{1}{x - 1}=1 limx2x11=1 ,此时它就不是无穷大量了。
  • 3 ∘ 3^{\circ} 3 无穷大量与无界量存在区别:
    • ① 无穷大量必然是无界量。例如, n 2 n^2 n2 n → ∞ n\rightarrow\infty n时是无穷大量,同时对于任意给定的正数 M M M,当 n > M n > \sqrt{M} n>M 时, n 2 > M n^2 > M n2>M,所以 n 2 n^2 n2也是无界量。
    • ② 无界量却不一定是无穷大量。因为无界量的极限不一定是 ∞ \infty ,有可能极限根本不存在。比如函数 f ( n ) = { n , n 为奇数 1 n , n 为偶数 f(n)=\begin{cases}n, & n为奇数\\\frac{1}{n}, & n为偶数\end{cases} f(n)={n,n1,n为奇数n为偶数,当 n n n为奇数时, f ( n ) f(n) f(n)的值可以无限增大,所以该变量是无界的,但由于其值在奇数项和偶数项之间波动,极限不存在(属于纯粹的不存在),因此它不是无穷大量。

二、无穷小量

分析下列变量的极限:
lim ⁡ n → ∞ 1 n 2 = 0 \lim_{n\rightarrow\infty}\frac{1}{n^2}=0 limnn21=0 lim ⁡ x → + ∞ 1 x = 0 \lim_{x\rightarrow+\infty}\frac{1}{\sqrt{x}}=0 limx+x 1=0 lim ⁡ x → 1 ( x − 1 ) = 0 \lim_{x\rightarrow 1}(x - 1)=0 limx1(x1)=0 lim ⁡ x → 0 + x = 0 \lim_{x\rightarrow 0^{+}}\sqrt{x}=0 limx0+x =0

上述这些变量的极限均为 0 0 0,像这类极限值为 0 0 0的变量,我们将其定义为无穷小量。

1.定义

当自变量有某种变化趋势时,如果数列或函数的极限为 0 0 0,那么该数列或函数(统称为变量)就被称为在自变量这种变化趋势下的无穷小量。

  • 1 ∘ 1^{\circ} 1 无穷小量不是一个数值极小的常数,而是极限为 0 0 0的变量(数列或函数)。比如 0.00001 0.00001 0.00001是一个确定的常数,不是无穷小量,而当 x → 0 x\rightarrow 0 x0时, x x x就是无穷小量。
  • 2 ∘ 2^{\circ} 2 同样,在说明某个变量是无穷小量时,一定要明确自变量的变化趋势。例如, x − 1 x - 1 x1 x → 1 x\rightarrow 1 x1时,极限为 0 0 0,所以它是当 x → 1 x\rightarrow 1 x1时的无穷小量;但当 x → 2 x\rightarrow 2 x2时, lim ⁡ x → 2 ( x − 1 ) = 1 \lim_{x\rightarrow 2}(x - 1)=1 limx2(x1)=1,此时 ( x − 1 ) (x - 1) (x1)就不是无穷小量了。
  • 3 ∘ 3^{\circ} 3 0 0 0”是唯一可以被看作无穷小量的常数。因为对于常数函数 y = 0 y = 0 y=0,无论自变量如何变化,其极限始终为 0 0 0

2. 无穷小量的性质

(1) 无穷小量与有界变量的乘积仍是无穷小量

证明:假设 α ( x ) \alpha(x) α(x)是当 x → x 0 x\rightarrow x_0 xx0时的无穷小量,即 lim ⁡ x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limxx0α(x)=0。这意味着对于任意给定的正数 ε \varepsilon ε,都存在一个正数 δ 1 \delta_1 δ1,当 0 < ∣ x − x 0 ∣ < δ 1 0 < |x - x_0| < \delta_1 0<xx0<δ1时,有 ∣ α ( x ) − 0 ∣ = ∣ α ( x ) ∣ < ε |\alpha(x)-0| = |\alpha(x)| < \varepsilon α(x)0∣=α(x)<ε成立。

又设 β ( x ) \beta(x) β(x)是一个有界变量,即存在正数 M M M,使得对于所有的 x x x(在某个定义域内),都有 ∣ β ( x ) ∣ ≤ M |\beta(x)|\leq M β(x)M

那么,对于任意给定的正数 ε \varepsilon ε,取 δ = δ 1 \delta = \delta_1 δ=δ1,当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ时,有:
∣ α ( x ) ⋅ β ( x ) − 0 ∣ = ∣ α ( x ) ⋅ β ( x ) ∣ = ∣ α ( x ) ∣ ⋅ ∣ β ( x ) ∣ < M ε |\alpha(x)\cdot\beta(x)-0| = |\alpha(x)\cdot\beta(x)| = |\alpha(x)|\cdot|\beta(x)| < M\varepsilon α(x)β(x)0∣=α(x)β(x)=α(x)β(x)<

根据极限的定义, lim ⁡ x → x 0 α ( x ) ⋅ β ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)\cdot\beta(x)=0 limxx0α(x)β(x)=0,所以 α ( x ) ⋅ β ( x ) \alpha(x)\cdot\beta(x) α(x)β(x)是当 x → x 0 x\rightarrow x_0 xx0时的无穷小量,得证。

:因为常数可以看作是有界变量(其绝对值不超过自身绝对值),所以无穷小量与常数的乘积仍是无穷小量。例如:对于函数 y = x sin ⁡ 1 x y = x\sin\frac{1}{x} y=xsinx1,当 x → 0 x\rightarrow 0 x0时, x x x是无穷小量,而 sin ⁡ 1 x \sin\frac{1}{x} sinx1是有界变量(因为 ∣ sin ⁡ 1 x ∣ ≤ 1 |\sin\frac{1}{x}|\leq 1 sinx11),所以根据上述性质, lim ⁡ x → 0 x sin ⁡ 1 x = 0 \lim_{x\rightarrow 0} x\sin\frac{1}{x}=0 limx0xsinx1=0

(2) 两个无穷小量的代数和仍是无穷小量

证明:已知 lim ⁡ x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limxx0α(x)=0 lim ⁡ x → x 0 β ( x ) = 0 \lim_{x\rightarrow x_0}\beta(x)=0 limxx0β(x)=0

根据极限的运算法则,对于两个极限都存在的函数,它们的和(差)的极限等于极限的和(差)。所以 lim ⁡ x → x 0 ( α ( x ) ± β ( x ) ) = lim ⁡ x → x 0 α ( x ) ± lim ⁡ x → x 0 β ( x ) = 0 ± 0 = 0 \lim_{x\rightarrow x_0}(\alpha(x)\pm\beta(x))=\lim_{x\rightarrow x_0}\alpha(x)\pm\lim_{x\rightarrow x_0}\beta(x)=0\pm0 = 0 limxx0(α(x)±β(x))=limxx0α(x)±limxx0β(x)=0±0=0,即证两个无穷小量的代数和仍是无穷小量。

:此性质可以推广到有限多个无穷小量的情况。即若 α 1 ( x ) , α 2 ( x ) , ⋯   , α n ( x ) \alpha_1(x),\alpha_2(x),\cdots,\alpha_n(x) α1(x),α2(x),,αn(x)都是当 x → x 0 x\rightarrow x_0 xx0时的无穷小量,那么 α 1 ( x ) ± α 2 ( x ) ± ⋯ ± α n ( x ) \alpha_1(x)\pm\alpha_2(x)\pm\cdots\pm\alpha_n(x) α1(x)±α2(x)±±αn(x)也是当 x → x 0 x\rightarrow x_0 xx0时的无穷小量。

(3) 两个无穷小量的乘积仍是无穷小量

证明:因为 lim ⁡ x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limxx0α(x)=0 lim ⁡ x → x 0 β ( x ) = 0 \lim_{x\rightarrow x_0}\beta(x)=0 limxx0β(x)=0

根据极限的乘法运算法则,两个极限都为 0 0 0的函数,它们乘积的极限为 0 0 0,即 lim ⁡ x → x 0 α ( x ) ⋅ β ( x ) = lim ⁡ x → x 0 α ( x ) ⋅ lim ⁡ x → x 0 β ( x ) = 0 × 0 = 0 \lim_{x\rightarrow x_0}\alpha(x)\cdot\beta(x)=\lim_{x\rightarrow x_0}\alpha(x)\cdot\lim_{x\rightarrow x_0}\beta(x)=0\times0 = 0 limxx0α(x)β(x)=limxx0α(x)limxx0β(x)=0×0=0,所以两个无穷小量的乘积仍是无穷小量。

:该性质同样可以推广到有限多个无穷小量的乘积。即有限多个无穷小量的乘积仍是无穷小量。

特别需要注意的是,两个无穷小量的商是一个未定式,其极限值不能确定,通常称为 0 0 \frac{0}{0} 00型。后续会专门研究这类极限的求解方法。

3. 函数与极限值的关系

定理 lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x)=A limxx0f(x)=A的充分必要条件是 f ( x ) = A + α ( x ) f(x)=A+\alpha(x) f(x)=A+α(x),其中 lim ⁡ x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limxx0α(x)=0,也就是 α ( x ) \alpha(x) α(x)是无穷小量。

证明

  • 必要性:已知 lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x)=A limxx0f(x)=A,根据极限的性质, lim ⁡ x → x 0 ( f ( x ) − A ) = 0 \lim_{x\rightarrow x_0}(f(x)-A)=0 limxx0(f(x)A)=0。这表明 f ( x ) − A f(x)-A f(x)A是当 x → x 0 x\rightarrow x_0 xx0时的无穷小量,我们记 f ( x ) − A = α ( x ) f(x)-A=\alpha(x) f(x)A=α(x),那么就有 f ( x ) = A + α ( x ) f(x)=A+\alpha(x) f(x)=A+α(x),且 lim ⁡ x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limxx0α(x)=0
  • 充分性:若 f ( x ) = A + α ( x ) f(x)=A+\alpha(x) f(x)=A+α(x),并且 lim ⁡ x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limxx0α(x)=0。对等式两边同时求极限,根据极限的加法运算法则, lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 ( A + α ( x ) ) = A + lim ⁡ x → x 0 α ( x ) \lim_{x\rightarrow x_0} f(x)=\lim_{x\rightarrow x_0}(A+\alpha(x))=A+\lim_{x\rightarrow x_0}\alpha(x) limxx0f(x)=limxx0(A+α(x))=A+limxx0α(x)。因为 lim ⁡ x → x 0 α ( x ) = 0 \lim_{x\rightarrow x_0}\alpha(x)=0 limxx0α(x)=0,所以 lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x)=A limxx0f(x)=A,证毕。

4. 无穷小量与无穷大量的关系

定理:在自变量 x x x的同一变化过程中,如果 f ( x ) f(x) f(x)是无穷大量,那么 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷小量;反之,若 f ( x ) f(x) f(x)是无穷小量,并且 f ( x ) ≠ 0 f(x)\neq 0 f(x)=0,那么 1 f ( x ) \frac{1}{f(x)} f(x)1为无穷大量。

证明

  • (1) 假设 lim ⁡ x → x 0 f ( x ) = ∞ \lim_{x\rightarrow x_0} f(x)=\infty limxx0f(x)=。这意味着对于任意给定的正数 ε \varepsilon ε,取 M = 1 ε > 0 M = \frac{1}{\varepsilon}>0 M=ε1>0,一定存在正数 δ \delta δ,当 x x x满足 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ时,有 ∣ f ( x ) ∣ > M = 1 ε |f(x)|>M=\frac{1}{\varepsilon} f(x)>M=ε1。两边同时取倒数,可得 ∣ 1 f ( x ) ∣ < ε |\frac{1}{f(x)}|<\varepsilon f(x)1<ε。根据极限的定义, lim ⁡ x → x 0 1 f ( x ) = 0 \lim_{x\rightarrow x_0}\frac{1}{f(x)}=0 limxx0f(x)1=0,所以 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷小量。
  • (2) 假设 lim ⁡ x → x 0 f ( x ) = 0 \lim_{x\rightarrow x_0} f(x)=0 limxx0f(x)=0,且 f ( x ) ≠ 0 f(x)\neq 0 f(x)=0。对于任意给定的正数 M M M,取 ε = 1 M > 0 \varepsilon=\frac{1}{M}>0 ε=M1>0,因为 lim ⁡ x → x 0 f ( x ) = 0 \lim_{x\rightarrow x_0} f(x)=0 limxx0f(x)=0,所以存在正数 δ \delta δ,当 x x x满足 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ时,有 ∣ f ( x ) ∣ < ε = 1 M |f(x)|<\varepsilon=\frac{1}{M} f(x)<ε=M1。两边同时取倒数,可得 ∣ 1 f ( x ) ∣ > M |\frac{1}{f(x)}|>M f(x)1>M。根据极限的定义, lim ⁡ x → x 0 1 f ( x ) = ∞ \lim_{x\rightarrow x_0}\frac{1}{f(x)}=\infty limxx0f(x)1=,所以 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷大量。

:在自变量 x x x的同一变化过程中,可以简单地理解为无穷小量(非零)与无穷大量互为倒数关系。

5. 曲线的渐近线

对于部分函数,当定义域和值域为无限区间时,其图像会朝着无穷远处延伸。在这个过程中,曲线会呈现出越来越靠近某一直线的形态,这条直线就被称为曲线的渐近线。

(1) 渐近线的定义

如果曲线上的一点沿着曲线向无穷远处移动时,该点与某条直线的距离逐渐趋近于 0 0 0,那么这条直线就被称作曲线的一条渐近线。

(2) 渐近线的求法
  • ① 斜渐近线 y = k x + b y=kx + b y=kx+b
    曲线 y = f ( x ) y = f(x) y=f(x)上有一动点 P ( x , y ) P(x, y) P(x,y),根据点到直线的距离公式 d = ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 d=\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} d=A2+B2 Ax0+By0+C,对于直线 y = k x + b y = kx + b y=kx+b(可变形为 k x − y + b = 0 kx - y + b = 0 kxy+b=0),则点 P P P到该直线的距离为 d = ∣ k x − y + b ∣ 1 + k 2 = ∣ f ( x ) − ( k x − b ) ∣ 1 + k 2 d=\frac{|kx - y + b|}{\sqrt{1 + k^2}}=\frac{|f(x)-(kx - b)|}{\sqrt{1 + k^2}} d=1+k2 kxy+b=1+k2 f(x)(kxb)

lim ⁡ x → ± ∞ d = lim ⁡ x → ± ∞ ∣ f ( x ) − ( k x − b ) ∣ 1 + k 2 = 0 \lim_{x\rightarrow\pm\infty} d=\lim_{x\rightarrow\pm\infty}\frac{|f(x)-(kx - b)|}{\sqrt{1 + k^2}}=0 limx±d=limx±1+k2 f(x)(kxb)=0,则意味着 lim ⁡ x → ± ∞ ∣ f ( x ) − ( k x − b ) ∣ = 0 \lim_{x\rightarrow\pm\infty}|f(x)-(kx - b)|=0 limx±f(x)(kxb)=0

通过特定的公式(通常是 lim ⁡ x → ± ∞ f ( x ) x = k \lim_{x\rightarrow\pm\infty}\frac{f(x)}{x}=k limx±xf(x)=k lim ⁡ x → ± ∞ ( f ( x ) − k x ) = b \lim_{x\rightarrow\pm\infty}(f(x)-kx)=b limx±(f(x)kx)=b )分别求出 k k k b b b的值,再将其代入 y = k x + b y = kx + b y=kx+b,即可得到斜渐近线方程。

  • ② 水平渐近线 y = b y = b y=b
    当斜渐近线 y = k x + b y = kx + b y=kx+b中的斜率 k = 0 k = 0 k=0时,就得到了水平渐近线 y = b y = b y=b。其中 b = lim ⁡ x → ± ∞ f ( x ) b = \lim_{x\rightarrow\pm\infty} f(x) b=limx±f(x),即当 x x x趋向于正无穷或负无穷时,函数 f ( x ) f(x) f(x)的极限值。
  • ③ 铅锤渐近线
    x x x轴垂直的渐近线 x = c x = c x=c被称为铅锤渐近线,其中 c c c满足 lim ⁡ x → c f ( x ) = ∞ ( + ∞ , − ∞ ) \lim_{x\rightarrow c} f(x)=\infty(+\infty,-\infty) limxcf(x)=(+,) 。也就是说,当 x x x趋近于 c c c时,函数 f ( x ) f(x) f(x)的极限为无穷大。

例1:求 y = x 2 x + 1 y=\frac{x^2}{x + 1} y=x+1x2的渐近线。

    • 斜渐近线
      • 先求 k k k lim ⁡ x → ∞ x 2 x + 1 x = lim ⁡ x → ∞ x 2 x ( x + 1 ) = lim ⁡ x → ∞ x x + 1 = 1 \lim_{x\rightarrow\infty}\frac{\frac{x^2}{x + 1}}{x}=\lim_{x\rightarrow\infty}\frac{x^2}{x(x + 1)}=\lim_{x\rightarrow\infty}\frac{x}{x + 1}=1 limxxx+1x2=limxx(x+1)x2=limxx+1x=1
      • 再求 b b b lim ⁡ x → ∞ ( x 2 x + 1 − x ) = lim ⁡ x → ∞ x 2 − x ( x + 1 ) x + 1 = lim ⁡ x → ∞ x 2 − x 2 − x x + 1 = lim ⁡ x → ∞ − x x + 1 = − 1 \lim_{x\rightarrow\infty}(\frac{x^2}{x + 1}-x)=\lim_{x\rightarrow\infty}\frac{x^2 - x(x + 1)}{x + 1}=\lim_{x\rightarrow\infty}\frac{x^2 - x^2 - x}{x + 1}=\lim_{x\rightarrow\infty}\frac{-x}{x + 1}=-1 limx(x+1x2x)=limxx+1x2x(x+1)=limxx+1x2x2x=limxx+1x=1。所以斜渐近线为 y = x − 1 y = x - 1 y=x1
    • 铅锤渐近线:令 x + 1 = 0 x + 1 = 0 x+1=0,解得 x = − 1 x=-1 x=1。当 x → − 1 x\rightarrow - 1 x1时, lim ⁡ x → − 1 x 2 x + 1 = ∞ \lim_{x\rightarrow - 1}\frac{x^2}{x + 1}=\infty limx1x+1x2=,所以 x = − 1 x=-1 x=1是铅锤渐近线。
  • 例2:求曲线 y = 2 x + 2 π arctan ⁡ x y = 2x+\frac{2}{\pi}\arctan x y=2x+π2arctanx的渐近线。

      • 斜渐近线
        • ▪ 求 k k k lim ⁡ x → ∞ 2 x + 2 π arctan ⁡ x x = lim ⁡ x → ∞ ( 2 + 2 π arctan ⁡ x x ) = 2 \lim_{x\rightarrow\infty}\frac{2x+\frac{2}{\pi}\arctan x}{x}=\lim_{x\rightarrow\infty}(2+\frac{2}{\pi}\frac{\arctan x}{x}) = 2 limxx2x+π2arctanx=limx(2+π2xarctanx)=2(因为 lim ⁡ x → ∞ arctan ⁡ x x = 0 \lim_{x\rightarrow\infty}\frac{\arctan x}{x}=0 limxxarctanx=0 arctan ⁡ x \arctan x arctanx的值域是 ( − π 2 , π 2 ) (-\frac{\pi}{2},\frac{\pi}{2}) (2π,2π),当 x x x趋于无穷时, arctan ⁡ x x \frac{\arctan x}{x} xarctanx趋于 0 0 0 )。
        • ▪ 求 b b b lim ⁡ x → ∞ ( 2 x + 2 π arctan ⁡ x − 2 x ) = lim ⁡ x → ∞ 2 π arctan ⁡ x = 2 π × π 2 = 1 \lim_{x\rightarrow\infty}(2x+\frac{2}{\pi}\arctan x - 2x)=\lim_{x\rightarrow\infty}\frac{2}{\pi}\arctan x=\frac{2}{\pi}×\frac{\pi}{2}= 1 limx(2x+π2arctanx2x)=limxπ2arctanx=π2×2π=1(当 x → + ∞ x\rightarrow +\infty x+时, arctan ⁡ x → π 2 \arctan x\rightarrow\frac{\pi}{2} arctanx2π )。所以斜渐近线为 y = 2 x + 1 y = 2x + 1 y=2x+1
      • 水平渐近线:因为已经求出斜渐近线的斜率 k = 2 ≠ 0 k = 2\neq0 k=2=0,所以该曲线不存在水平渐近线。
      • 铅锤渐近线:由于对于任意实数 c c c lim ⁡ x → c ( 2 x + 2 π arctan ⁡ x ) \lim_{x\rightarrow c}(2x+\frac{2}{\pi}\arctan x) limxc(2x+π2arctanx)都不会趋于无穷大,所以该曲线不存在铅锤渐近线。

作业与参考答案

  1. n → ∞ n\rightarrow\infty n时,判断下列数列是否为无穷小:

    • (1) x n = 1 2 n x_n=\frac{1}{2^n} xn=2n1
      • 解:因为 lim ⁡ n → ∞ 1 2 n = 0 \lim_{n\rightarrow\infty}\frac{1}{2^n}=0 limn2n1=0(指数函数 y = a n y = a^n y=an,当 0 < a < 1 0 < a < 1 0<a<1时, n → ∞ n\rightarrow\infty n y → 0 y\rightarrow0 y0,这里 a = 1 2 a=\frac{1}{2} a=21 ),所以 x n = 1 2 n x_n=\frac{1}{2^n} xn=2n1是当 n → ∞ n\rightarrow\infty n时的无穷小。
    • (2) x n = n n + 1 x_n=\frac{n}{n + 1} xn=n+1n
      • 解: lim ⁡ n → ∞ n n + 1 = lim ⁡ n → ∞ 1 1 + 1 n = 1 \lim_{n\rightarrow\infty}\frac{n}{n + 1}=\lim_{n\rightarrow\infty}\frac{1}{1+\frac{1}{n}} = 1 limnn+1n=limn1+n11=1(分子分母同时除以 n n n ),所以 x n = n n + 1 x_n=\frac{n}{n + 1} xn=n+1n不是当 n → ∞ n\rightarrow\infty n时的无穷小。
    • (3) x n = 1 + ( − 1 ) n n x_n=\frac{1+(-1)^n}{n} xn=n1+(1)n
      • 解: ∣ 1 + ( − 1 ) n n ∣ ≤ 1 + 1 n = 2 n \left|\frac{1+(-1)^n}{n}\right|\leq\frac{1 + 1}{n}=\frac{2}{n} n1+(1)n n1+1=n2,而 lim ⁡ n → ∞ 2 n = 0 \lim_{n\rightarrow\infty}\frac{2}{n}=0 limnn2=0,根据夹逼准则, lim ⁡ n → ∞ 1 + ( − 1 ) n n = 0 \lim_{n\rightarrow\infty}\frac{1+(-1)^n}{n}=0 limnn1+(1)n=0,所以 x n = 1 + ( − 1 ) n n x_n=\frac{1+(-1)^n}{n} xn=n1+(1)n是当 n → ∞ n\rightarrow\infty n时的无穷小。
    • (4) x n = ( n − 1 ) 2 n + 1 x_n=\frac{(n - 1)^2}{n + 1} xn=n+1(n1)2
      • 解: lim ⁡ n → ∞ ( n − 1 ) 2 n + 1 = lim ⁡ n → ∞ n 2 − 2 n + 1 n + 1 = lim ⁡ n → ∞ n − 2 + 1 n 1 + 1 n = ∞ \lim_{n\rightarrow\infty}\frac{(n - 1)^2}{n + 1}=\lim_{n\rightarrow\infty}\frac{n^2 - 2n + 1}{n + 1}=\lim_{n\rightarrow\infty}\frac{n - 2+\frac{1}{n}}{1+\frac{1}{n}}=\infty limnn+1(n1)2=limnn+1n22n+1=limn1+n1n2+n1=(分子分母同时除以 n n n ),所以 x n = ( n − 1 ) 2 n + 1 x_n=\frac{(n - 1)^2}{n + 1} xn=n+1(n1)2不是当 n → ∞ n\rightarrow\infty n时的无穷小。
    • (5) x n = { n 2 + n n , n 为奇数 1 n , n 为偶数 x_n=\begin{cases}\frac{n^2+\sqrt{n}}{n}, & n\text{为奇数}\\\frac{1}{n}, & n\text{为偶数}\end{cases} xn={nn2+n ,n1,n为奇数n为偶数
      • 解:当 n n n为偶数时, lim ⁡ n → ∞ 1 n = 0 \lim_{n\rightarrow\infty}\frac{1}{n}=0 limnn1=0;当 n n n为奇数时, lim ⁡ n → ∞ n 2 + n n = lim ⁡ n → ∞ ( n + 1 n ) = ∞ \lim_{n\rightarrow\infty}\frac{n^2+\sqrt{n}}{n}=\lim_{n\rightarrow\infty}(n + \frac{1}{\sqrt{n}})=\infty limnnn2+n =limn(n+n 1)=。因为奇数项极限不为 0 0 0,所以 x n x_n xn不是当 n → ∞ n\rightarrow\infty n时的无穷小。
  2. x → 0 x\rightarrow 0 x0时,判断下列变量哪些是无穷小,哪些是无穷大:
    100 x 2 100x^{2} 100x2, x 3 \sqrt [3]{x} 3x , x + 1 \sqrt {x+1} x+1 , 2 x \frac {2} {x} x2, x x 2 \frac {x} {x^{2}} x2x, x 2 x \frac {x^{2}} {x} xx2, 0 0 0, x 2 + 0.01 x^{2}+0.01 x2+0.01, 1 x − 1 \frac {1} {x-1} x11, x 2 + x 2 x^{2}+\frac {x} {2} x2+2x, x − 1 x + 1 \frac {x-1} {x+1} x+1x1

    • 100 x 2 100x^2 100x2 lim ⁡ x → 0 100 x 2 = 0 \lim_{x\rightarrow 0}100x^2 = 0 limx0100x2=0,所以 100 x 2 100x^2 100x2是当 x → 0 x\rightarrow 0 x0时的无穷小。
    • x 3 \sqrt[3]{x} 3x lim ⁡ x → 0 x 3 = 0 \lim_{x\rightarrow 0}\sqrt[3]{x}=0 limx03x =0,所以 x 3 \sqrt[3]{x} 3x 是当 x → 0 x\rightarrow 0 x0时的无穷小。
    • x + 1 \sqrt{x + 1} x+1 lim ⁡ x → 0 x + 1 = 0 + 1 = 1 \lim_{x\rightarrow 0}\sqrt{x + 1}=\sqrt{0 + 1}=1 limx0x+1 =0+1 =1,所以 x + 1 \sqrt{x + 1} x+1 既不是无穷小也不是无穷大。
    • 2 x \frac{2}{x} x2 lim ⁡ x → 0 2 x = ∞ \lim_{x\rightarrow 0}\frac{2}{x}=\infty limx0x2=(当 x → 0 + x\rightarrow 0^+ x0+时, 2 x → + ∞ \frac{2}{x}\rightarrow +\infty x2+;当 x → 0 − x\rightarrow 0^- x0时, 2 x → − ∞ \frac{2}{x}\rightarrow -\infty x2 ),所以 2 x \frac{2}{x} x2是当 x → 0 x\rightarrow 0 x0时的无穷大。
    • x x 2 = 1 x \frac{x}{x^2}=\frac{1}{x} x2x=x1 lim ⁡ x → 0 1 x = ∞ \lim_{x\rightarrow 0}\frac{1}{x}=\infty limx0x1=(同理,当 x → 0 + x\rightarrow 0^+ x0+时, 1 x → + ∞ \frac{1}{x}\rightarrow +\infty x1+;当 x → 0 − x\rightarrow 0^- x0时, 1 x → − ∞ \frac{1}{x}\rightarrow -\infty x1 ),所以 x x 2 \frac{x}{x^2} x2x是当 x → 0 x\rightarrow 0 x0时的无穷大。
    • x 2 x = x \frac{x^2}{x}=x xx2=x lim ⁡ x → 0 x = 0 \lim_{x\rightarrow 0}x = 0 limx0x=0,所以 x 2 x \frac{x^2}{x} xx2是当 x → 0 x\rightarrow 0 x0时的无穷小。
    • 0 0 0:常数 0 0 0是无穷小量,所以 0 0 0是当 x → 0 x\rightarrow 0 x0时的无穷小。
    • x 2 + 0.01 x^2 + 0.01 x2+0.01 lim ⁡ x → 0 ( x 2 + 0.01 ) = 0 + 0.01 = 0.01 \lim_{x\rightarrow 0}(x^2 + 0.01)=0 + 0.01 = 0.01 limx0(x2+0.01)=0+0.01=0.01,所以 x 2 + 0.01 x^2 + 0.01 x2+0.01既不是无穷小也不是无穷大。
    • 1 x − 1 \frac{1}{x - 1} x11 lim ⁡ x → 0 1 x − 1 = 1 0 − 1 = − 1 \lim_{x\rightarrow 0}\frac{1}{x - 1}=\frac{1}{0 - 1}=-1 limx0x11=011=1,所以 1 x − 1 \frac{1}{x - 1} x11既不是无穷小也不是无穷大。
    • x 2 + x 2 x^2+\frac{x}{2} x2+2x lim ⁡ x → 0 ( x 2 + x 2 ) = 0 + 0 = 0 \lim_{x\rightarrow 0}(x^2+\frac{x}{2})=0 + 0 = 0 limx0(x2+2x)=0+0=0,所以 x 2 + x 2 x^2+\frac{x}{2} x2+2x是当 x → 0 x\rightarrow 0 x0时的无穷小。
    • x − 1 x + 1 \frac{x - 1}{x + 1} x+1x1 lim ⁡ x → 0 x − 1 x + 1 = 0 − 1 0 + 1 = − 1 \lim_{x\rightarrow 0}\frac{x - 1}{x + 1}=\frac{0 - 1}{0 + 1}=-1 limx0x+1x1=0+101=1,所以 x − 1 x + 1 \frac{x - 1}{x + 1} x+1x1既不是无穷小也不是无穷大。
  3. 计算下列极限:

    • (1) lim ⁡ x → ∞ x 2 + 1 x 3 + x ( 3 + cos ⁡ x ) \lim_{x\rightarrow\infty}\frac{x^2 + 1}{x^3 + x}(3+\cos x) limxx3+xx2+1(3+cosx)
      • 解:因为 ∣ cos ⁡ x ∣ ≤ 1 |\cos x|\leq1 cosx1,所以 2 ≤ 3 + cos ⁡ x ≤ 4 2\leq3+\cos x\leq4 23+cosx4 3 + cos ⁡ x 3+\cos x 3+cosx是有界函数。
      • 又因为 lim ⁡ x → ∞ x 2 + 1 x 3 + x = lim ⁡ x → ∞ 1 x + 1 x 3 1 + 1 x 2 = 0 \lim_{x\rightarrow\infty}\frac{x^2 + 1}{x^3 + x}=\lim_{x\rightarrow\infty}\frac{\frac{1}{x}+\frac{1}{x^3}}{1+\frac{1}{x^2}} = 0 limxx3+xx2+1=limx1+x21x1+x31=0(分子分母同时除以 x 3 x^3 x3 )。
      • 根据无穷小量与有界变量的乘积仍是无穷小量,所以 lim ⁡ x → ∞ x 2 + 1 x 3 + x ( 3 + cos ⁡ x ) = 0 \lim_{x\rightarrow\infty}\frac{x^2 + 1}{x^3 + x}(3+\cos x)=0 limxx3+xx2+1(3+cosx)=0
    • (2) lim ⁡ x → ∞ sin ⁡ x 2 + x cos ⁡ 2 x − x \lim_{x\rightarrow\infty}\frac{\sin x^2 + x}{\cos^2x - x} limxcos2xxsinx2+x
      • 解:分子分母同时除以 x x x,得到 lim ⁡ x → ∞ sin ⁡ x 2 x + 1 cos ⁡ 2 x x − 1 \lim_{x\rightarrow\infty}\frac{\frac{\sin x^2}{x}+1}{\frac{\cos^2x}{x}-1} limxxcos2x1xsinx2+1
      • 因为 ∣ sin ⁡ x 2 ∣ ≤ 1 |\sin x^2|\leq1 sinx21,所以 lim ⁡ x → ∞ sin ⁡ x 2 x = 0 \lim_{x\rightarrow\infty}\frac{\sin x^2}{x}=0 limxxsinx2=0;同理 lim ⁡ x → ∞ cos ⁡ 2 x x = 0 \lim_{x\rightarrow\infty}\frac{\cos^2x}{x}=0 limxxcos2x=0
      • lim ⁡ x → ∞ sin ⁡ x 2 x + 1 cos ⁡ 2 x x − 1 = 0 + 1 0 − 1 = − 1 \lim_{x\rightarrow\infty}\frac{\frac{\sin x^2}{x}+1}{\frac{\cos^2x}{x}-1}=\frac{0 + 1}{0 - 1}=-1 limxxcos2x1xsinx2+1=010+1=1
  4. 求下列曲线的渐近线:

    • (1) y = e x y = e^x y=ex
      • 解: lim ⁡ x → − ∞ e x = 0 \lim_{x\rightarrow -\infty}e^x = 0 limxex=0,所以 y = 0 y = 0 y=0是曲线 y = e x y = e^x y=ex的水平渐近线;当 x → + ∞ x\rightarrow +\infty x+时, e x → + ∞ e^x\rightarrow +\infty ex+,不存在斜渐近线和铅锤渐近线。
    • (2) y = ln ⁡ x y=\ln x y=lnx
      • 解: lim ⁡ x → 0 + ln ⁡ x = − ∞ \lim_{x\rightarrow 0^{+}}\ln x=-\infty limx0+lnx=,所以 x = 0 x = 0 x=0是曲线 y = ln ⁡ x y=\ln x y=lnx的铅锤渐近线;当 x → + ∞ x\rightarrow +\infty x+时, lim ⁡ x → + ∞ ln ⁡ x x = lim ⁡ x → + ∞ 1 x = 0 \lim_{x\rightarrow +\infty}\frac{\ln x}{x}=\lim_{x\rightarrow +\infty}\frac{1}{x}=0 limx+xlnx=limx+x1=0(利用洛必达法则,对 ln ⁡ x x \frac{\ln x}{x} xlnx上下求导), lim ⁡ x → + ∞ ( ln ⁡ x − 0 × x ) = ∞ \lim_{x\rightarrow +\infty}(\ln x-0\times x)=\infty limx+(lnx0×x)=,所以不存在斜渐近线和水平渐近线。
    • (3) y = e − 1 x y = e^{-\frac{1}{x}} y=ex1
      • 解: lim ⁡ x → 0 − e − 1 x = ∞ \lim_{x\rightarrow 0^{-}}e^{-\frac{1}{x}}=\infty limx0ex1=,所以 x = 0 x = 0 x=0是铅锤渐近线; lim ⁡ x → ± ∞ e − 1 x = e 0 = 1 \lim_{x\rightarrow\pm\infty}e^{-\frac{1}{x}} = e^0 = 1 limx±ex1=e0=1,所以 y = 1 y = 1 y=1是水平渐近线;不存在斜渐近线。
    • (4) y = e x 1 + x y=\frac{e^x}{1 + x} y=1+xex
      • 解: lim ⁡ x → − 1 + e x 1 + x = ∞ \lim_{x\rightarrow -1^{+}}\frac{e^x}{1 + x}=\infty limx1+1+xex= lim ⁡ x → − 1 − e x 1 + x = − ∞ \lim_{x\rightarrow -1^{-}}\frac{e^x}{1 + x}=-\infty limx11+xex=,所以 x = − 1 x = -1 x=1是铅锤渐近线;
      • 求斜渐近线, k = lim ⁡ x → ∞ e x 1 + x x = lim ⁡ x → ∞ e x x ( 1 + x ) = ∞ k=\lim_{x\rightarrow\infty}\frac{\frac{e^x}{1 + x}}{x}=\lim_{x\rightarrow\infty}\frac{e^x}{x(1 + x)}=\infty k=limxx1+xex=limxx(1+x)ex=(当 x → ∞ x\rightarrow\infty x时, e x e^x ex增长速度远大于 x ( 1 + x ) x(1 + x) x(1+x) ),所以不存在斜渐近线;
      • lim ⁡ x → − ∞ e x 1 + x = 0 \lim_{x\rightarrow -\infty}\frac{e^x}{1 + x}=0 limx1+xex=0,所以 y = 0 y = 0 y=0是水平渐近线( x → − ∞ x\rightarrow -\infty x方向)。
    • (5) y = x 3 ( x − 1 ) 2 y=\frac{x^3}{(x - 1)^2} y=(x1)2x3
      • 解: lim ⁡ x → 1 x 3 ( x − 1 ) 2 = ∞ \lim_{x\rightarrow 1}\frac{x^3}{(x - 1)^2}=\infty limx1(x1)2x3=,所以 x = 1 x = 1 x=1是铅锤渐近线;
      • 求斜渐近线, k = lim ⁡ x → ∞ x 3 ( x − 1 ) 2 x = lim ⁡ x → ∞ x 2 ( x − 1 ) 2 = lim ⁡ x → ∞ 1 ( 1 − 1 x ) 2 = 1 k=\lim_{x\rightarrow\infty}\frac{\frac{x^3}{(x - 1)^2}}{x}=\lim_{x\rightarrow\infty}\frac{x^2}{(x - 1)^2}=\lim_{x\rightarrow\infty}\frac{1}{(1-\frac{1}{x})^2}=1 k=limxx(x1)2x3=limx(x1)2x2=limx(1x1)21=1
      • b = lim ⁡ x → ∞ ( x 3 ( x − 1 ) 2 − x ) = lim ⁡ x → ∞ x 3 − x ( x − 1 ) 2 ( x − 1 ) 2 = lim ⁡ x → ∞ x 3 − x ( x 2 − 2 x + 1 ) ( x − 1 ) 2 = lim ⁡ x → ∞ x 3 − x 3 + 2 x 2 − x ( x − 1 ) 2 = lim ⁡ x → ∞ 2 x 2 − x ( x − 1 ) 2 = 2 b=\lim_{x\rightarrow\infty}(\frac{x^3}{(x - 1)^2}-x)=\lim_{x\rightarrow\infty}\frac{x^3 - x(x - 1)^2}{(x - 1)^2}=\lim_{x\rightarrow\infty}\frac{x^3 - x(x^2 - 2x + 1)}{(x - 1)^2}=\lim_{x\rightarrow\infty}\frac{x^3 - x^3 + 2x^2 - x}{(x - 1)^2}=\lim_{x\rightarrow\infty}\frac{2x^2 - x}{(x - 1)^2}=2 b=limx((x1)2x3x)=limx(x1)2x3x(x1)2=limx(x1)2x3x(x22x+1)=limx(x1)2x3x3+2x2x=limx(x1)22x2x=2,所以斜渐近线为 y = x + 2 y = x + 2 y=x+2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值