高等数学第四章---不定积分(§4.1不定积分的概念与性质)

§4.1不定积分的概念与性质

一、原函数问题

前面我们学习了函数的微分法,微分法的基本问题是:已知函数 f ( x ) f(x) f(x),求其导数 f ′ ( x ) f^{\prime}(x) f(x)。例如: f ( x ) = x 2 ⇒ f ′ ( x ) = 2 x f(x)=x^2 \Rightarrow f^{\prime}(x)=2x f(x)=x2f(x)=2x。微分法也有逆运算,称为积分法,即已知 f ′ ( x ) = 2 x f^{\prime}(x)=2x f(x)=2x,求 f ( x ) = ? f(x)=? f(x)=? 这类问题我们称为 原函数问题

(一)原函数的定义

f ( x ) f(x) f(x) 是定义在某区间上的已知函数,如果存在一个函数 F ( x ) F(x) F(x),对区间上的每一点 x x x 都有 F ′ ( x ) = f ( x ) F^{\prime}(x)=f(x) F(x)=f(x)(或 d ( F ( x ) ) = f ( x ) d x d(F(x))=f(x)dx d(F(x))=f(x)dx),则称 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个 原函数 (Antiderivative)。

例如:

  • ( x 2 ) ′ = 2 x (x^2)^{\prime}=2x (x2)=2x,所以, x 2 x^2 x2 2 x 2x 2x 的一个原函数。
  • ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)^{\prime}=\cos x (sinx)=cosx,所以 sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 的一个原函数。

注: f ( x ) f(x) f(x) F ( x ) F(x) F(x) 的导数, F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的原函数。

(二)原函数存在条件及唯一性

  1. f ( x ) f(x) f(x) 满足什么条件存在原函数 F ( x ) F(x) F(x)
    由原函数存在定理(将在第六章给出)知,若 f ( x ) f(x) f(x) 在区间上 连续,则它在该区间上一定存在原函数。
    (我们知道:初等函数在其定义区间内都是连续的,因此,初等函数在其定义区间内都有原函数,但其原函数不一定都是初等函数)。

  2. 如果 f ( x ) f(x) f(x) 存在原函数 F ( x ) F(x) F(x) F ( x ) F(x) F(x) 是否唯一?如何表示?

    • 不唯一,存在无穷多个。
      证明:若 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数,即 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x),则对于任意常数 C C C,函数 F ( x ) + C F(x)+C F(x)+C 也是 f ( x ) f(x) f(x) 的原函数,因为:
      ( F ( x ) + C ) ′ = F ′ ( x ) + ( C ) ′ = f ( x ) + 0 = f ( x ) (F(x)+C)^{\prime} = F'(x) + (C)' = f(x) + 0 = f(x) (F(x)+C)=F(x)+(C)=f(x)+0=f(x)
    • f ( x ) f(x) f(x)全体原函数 可以表示为 F ( x ) + C F(x)+C F(x)+C C C C 为任意常数)。
      证明:设 G ( x ) G(x) G(x) f ( x ) f(x) f(x) 的任意一个原函数,即 G ′ ( x ) = f ( x ) G^{\prime}(x)=f(x) G(x)=f(x)。又已知 F ′ ( x ) = f ( x ) F^{\prime}(x)=f(x) F(x)=f(x)。因为 G ′ ( x ) − F ′ ( x ) = f ( x ) − f ( x ) = 0 G'(x) - F'(x) = f(x) - f(x) = 0 G(x)F(x)=f(x)f(x)=0,即 ( G ( x ) − F ( x ) ) ′ = 0 (G(x)-F(x))' = 0 (G(x)F(x))=0。由拉格朗日中值定理的推论 2 可知,若一个函数在区间上的导数恒为零,则该函数在该区间上必为常数。因此, G ( x ) − F ( x ) = C G(x)-F(x)=C G(x)F(x)=C,即 G ( x ) = F ( x ) + C G(x)=F(x)+C G(x)=F(x)+C,其中 C C C 为某个常数。这表明 f ( x ) f(x) f(x) 的任何一个原函数都可以表示成 F ( x ) + C F(x)+C F(x)+C 的形式。

(三)如何求原函数?

根据问题(2)的结论,求一个函数的原函数问题,实际上是求该函数的 原函数全体。这引出了不定积分的概念。

注: 本章的核心内容就是建立一系列计算不定积分(即求原函数全体)的方法。

二、不定积分的概念

定义: 函数 f ( x ) f(x) f(x) 的所有原函数(原函数全体) F ( x ) + C F(x)+ C F(x)+C C C C 为任意常数)称为 f ( x ) f(x) f(x)不定积分 (Indefinite Integral),记作:
∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x)+C f(x)dx=F(x)+C
其中:

  • ∫ \int ” 称为 积分号 (Integral Sign)。
  • x x x” 称为 积分变量 (Variable of Integration)。
  • f ( x ) f(x) f(x)” 称为 被积函数 (Integrand)。
  • f ( x ) d x f(x)dx f(x)dx” 称为 被积表达式 (Element of Integration)。
  • C C C” 称为 积分常数 (Constant of Integration)。
  • F ( x ) F(x) F(x) f ( x ) f(x) f(x)一个 原函数。

例如:

  • 因为 ( x 2 ) ′ = 2 x (x^2)^{\prime}=2x (x2)=2x,所以 ∫ 2 x d x = x 2 + C \int 2xdx = x^2+C 2xdx=x2+C
  • 因为 ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)^{\prime}=\cos x (sinx)=cosx,所以 ∫ cos ⁡ x d x = sin ⁡ x + C \int\cos xdx = \sin x+C cosxdx=sinx+C

注: 已知 F ( x ) F(x) F(x) f ( x ) f(x) f(x)求导数 (Differentiation) 运算;已知 f ( x ) f(x) f(x) F ( x ) + C F(x)+C F(x)+C求不定积分 (Indefinite Integration) 运算。这两种运算互为逆运算。

三、不定积分的几何意义

不定积分 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x)+C f(x)dx=F(x)+C 表示的是一个函数族(family of functions)。对每一个确定的常数 C C C y = F ( x ) + C y=F(x)+C y=F(x)+C 在几何上都表示一条确定的曲线,称为 积分曲线 (Integral Curve)。

因此,不定积分 ∫ f ( x ) d x \int f(x)dx f(x)dx 的几何意义是:一簇相互平行的积分曲线 y = F ( x ) + C y=F(x)+C y=F(x)+C,其中任意一条曲线 y = F ( x ) + C y=F(x)+C y=F(x)+C 都可以通过 y = F ( x ) y=F(x) y=F(x) 沿 y y y 轴方向平移 C C C 个单位得到。

注: 这簇积分曲线 y = F ( x ) + C y=F(x)+C y=F(x)+C 在同一点 x x x 处的切线斜率都相同,均为 f ( x ) f(x) f(x),因为 ( F ( x ) + C ) ′ = F ′ ( x ) = f ( x ) (F(x)+C)^{\prime}=F'(x)=f(x) (F(x)+C)=F(x)=f(x)
在这里插入图片描述
例 1:

求经过点 ( 1 , 3 ) (1,3) (1,3),且其切线的斜率为 2 x 2x 2x 的曲线方程。

解:
此题是已知切线斜率函数 f ( x ) = y ′ = 2 x f(x)=y'=2x f(x)=y=2x,求通过特定点 ( 1 , 3 ) (1,3) (1,3) 的原函数 F ( x ) F(x) F(x)
首先,求 f ( x ) = 2 x f(x)=2x f(x)=2x 的不定积分:
∫ 2 x d x = x 2 + C \int 2xdx = x^2+C 2xdx=x2+C
这表示满足切线斜率为 2 x 2x 2x 的所有曲线(积分曲线簇)的方程为 y = x 2 + C y = x^2+C y=x2+C
然后,将点 ( 1 , 3 ) (1,3) (1,3) 代入曲线簇方程,以确定常数 C C C
3 = ( 1 ) 2 + C ⇒ 3 = 1 + C ⇒ C = 2 3 = (1)^2 + C \Rightarrow 3 = 1 + C \Rightarrow C = 2 3=(1)2+C3=1+CC=2
所以,所求的曲线方程为 y = x 2 + 2 y = x^2+2 y=x2+2

四、不定积分的性质

(一)不定积分与微分的关系(互为逆运算)

  1. 先积分再求导等于被积函数本身:
    ( ∫ f ( x ) d x ) ′ = f ( x ) (\int f(x)dx)^{\prime}=f(x) (f(x)dx)=f(x)
    或者写成微分形式:
    d ( ∫ f ( x ) d x ) = f ( x ) d x d(\int f(x)dx)=f(x)dx d(f(x)dx)=f(x)dx
    证明: 因为 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x)+C f(x)dx=F(x)+C,其中 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),所以 ( ∫ f ( x ) d x ) ′ = ( F ( x ) + C ) ′ = F ′ ( x ) + 0 = f ( x ) (\int f(x)dx)' = (F(x)+C)' = F'(x) + 0 = f(x) (f(x)dx)=(F(x)+C)=F(x)+0=f(x)

  2. 先求导再积分等于原函数加上任意常数:
    ∫ f ′ ( x ) d x = f ( x ) + C \int f^{\prime}(x)dx = f(x)+C f(x)dx=f(x)+C
    或者写成微分形式:
    ∫ d ( f ( x ) ) = f ( x ) + C \int d(f(x)) = f(x)+C d(f(x))=f(x)+C
    证明: 由原函数定义,因为 ( f ( x ) ) ′ = f ′ ( x ) (f(x))' = f'(x) (f(x))=f(x),所以 f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x) 的一个原函数。根据不定积分的定义, f ′ ( x ) f'(x) f(x) 的不定积分(即全体原函数)就是 f ( x ) + C f(x)+C f(x)+C

(二)不定积分的线性性质

设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的原函数存在, k k k 为非零常数。

  1. 常数因子可以提到积分号外:
    ∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf(x)dx = k\int f(x)dx kf(x)dx=kf(x)dx
    证明: F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数,即 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)。则 ∫ f ( x ) d x = F ( x ) + C 1 \int f(x)dx = F(x)+C_1 f(x)dx=F(x)+C1。我们需要证明 k ( F ( x ) + C 1 ) k(F(x)+C_1) k(F(x)+C1) k f ( x ) kf(x) kf(x) 的不定积分。
    ( k ∫ f ( x ) d x ) ′ = ( k ( F ( x ) + C 1 ) ) ′ = k F ′ ( x ) + 0 = k f ( x ) (k\int f(x)dx)' = (k(F(x)+C_1))' = k F'(x) + 0 = kf(x) (kf(x)dx)=(k(F(x)+C1))=kF(x)+0=kf(x)
    因此, k ∫ f ( x ) d x k\int f(x)dx kf(x)dx k f ( x ) kf(x) kf(x) 的原函数全体(注意,任意常数 k C 1 kC_1 kC1 仍是任意常数)。

  2. 和(差)的积分等于积分的和(差):
    ∫ ( f ( x ) ± g ( x ) ) d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \int(f(x)\pm g(x))dx=\int f(x)dx\pm\int g(x)dx (f(x)±g(x))dx=f(x)dx±g(x)dx
    证明: F ( x ) , G ( x ) F(x), G(x) F(x),G(x) 分别是 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的一个原函数,即 F ′ ( x ) = f ( x ) , G ′ ( x ) = g ( x ) F'(x)=f(x), G'(x)=g(x) F(x)=f(x),G(x)=g(x)
    ( ∫ f ( x ) d x ± ∫ g ( x ) d x ) ′ = ( F ( x ) + C 1 ± ( G ( x ) + C 2 ) ) ′ = ( F ( x ) ± G ( x ) + ( C 1 ± C 2 ) ) ′ = F ′ ( x ) ± G ′ ( x ) + 0 = f ( x ) ± g ( x ) (\int f(x)dx \pm \int g(x)dx)' = (F(x)+C_1 \pm (G(x)+C_2))' = (F(x) \pm G(x) + (C_1 \pm C_2))' = F'(x) \pm G'(x) + 0 = f(x) \pm g(x) (f(x)dx±g(x)dx)=(F(x)+C1±(G(x)+C2))=(F(x)±G(x)+(C1±C2))=F(x)±G(x)+0=f(x)±g(x)
    因此, ∫ f ( x ) d x ± ∫ g ( x ) d x \int f(x)dx\pm\int g(x)dx f(x)dx±g(x)dx f ( x ) ± g ( x ) f(x) \pm g(x) f(x)±g(x) 的原函数全体(注意,任意常数 C 1 ± C 2 C_1 \pm C_2 C1±C2 仍是任意常数)。

五、不定积分基本公式

本节给出不定积分的基本公式,这是计算不定积分的基础,必须熟记。这些公式可以直接由求导公式反推得到。

序号求导公式不定积分公式名称(补充)
1 ( C ) ′ = 0 (C)^{\prime}=0 (C)=0 ∫ 0 d x = C \int 0 dx = C 0dx=C零函数积分
2 ( x ) ′ = 1 (x)'=1 (x)=1 ∫ 1 d x = ∫ d x = x + C \int 1 dx = \int dx = x+C 1dx=dx=x+C常数 1 积分
3 ( x α + 1 ) ′ = ( α + 1 ) x α (x^{\alpha+1})'=(\alpha+1)x^\alpha (xα+1)=(α+1)xα ∫ x α d x = x α + 1 α + 1 + C ( α ≠ − 1 ) \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1}+C \quad (\alpha \neq -1) xαdx=α+1xα+1+C(α=1)幂函数积分
4 ( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln\lvert x\rvert)' = \frac{1}{x} (lnx)=x1 ∫ 1 x   d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x} \, dx = \ln\lvert x\rvert + C x1dx=lnx+C倒数函数积分
5 ( a x ) ′ = a x ln ⁡ a (a^x)'=a^x\ln a (ax)=axlna ∫ a x d x = a x ln ⁡ a + C ( a > 0 , a ≠ 1 ) \int a^xdx = \frac{a^x}{\ln a}+C \quad (a>0, a\neq 1) axdx=lnaax+C(a>0,a=1)指数函数积分
6 ( e x ) ′ = e x (e^x)'=e^x (ex)=ex ∫ e x d x = e x + C \int e^xdx = e^x+C exdx=ex+C自然指数函数积分
7 ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx ∫ cos ⁡ x d x = sin ⁡ x + C \int\cos xdx = \sin x+C cosxdx=sinx+C余弦函数积分
8 ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx ∫ sin ⁡ x d x = − cos ⁡ x + C \int\sin xdx = -\cos x+C sinxdx=cosx+C正弦函数积分
9 ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^2 x (tanx)=sec2x ∫ sec ⁡ 2 x d x = tan ⁡ x + C \int\sec^2 xdx = \tan x+C sec2xdx=tanx+C正割平方积分
10 ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^2 x (cotx)=csc2x ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int\csc^2 xdx = -\cot x+C csc2xdx=cotx+C余割平方积分
11 ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int\sec x\tan xdx = \sec x+C secxtanxdx=secx+C正割正切乘积积分
12 ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \int\csc x\cot xdx = -\csc x+C cscxcotxdx=cscx+C余割余切乘积积分
13 ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1 - x^2}} (arcsinx)=1x2 1 ∫ 1 1 − x 2 d x = arcsin ⁡ x + C \int\frac{1}{\sqrt{1 - x^2}}dx = \arcsin x+C 1x2 1dx=arcsinx+C反正弦相关积分
14 ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\frac{1}{\sqrt{1 - x^2}} (arccosx)=1x2 1 ∫ 1 1 − x 2 d x = − arccos ⁡ x + C ′ \int\frac{1}{\sqrt{1 - x^2}}dx = -\arccos x+C' 1x2 1dx=arccosx+C (注: C ′ = C + π 2 C' = C+\frac{\pi}{2} C=C+2π)反余弦相关积分
15 ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1 + x^2} (arctanx)=1+x21 ∫ 1 1 + x 2 d x = arctan ⁡ x + C \int\frac{1}{1 + x^2}dx = \arctan x+C 1+x21dx=arctanx+C反正切相关积分
16 ( arccot x ) ′ = − 1 1 + x 2 (\text{arccot} x)'=-\frac{1}{1 + x^2} (arccotx)=1+x21 ∫ 1 1 + x 2 d x = − arccot x + C ′ \int\frac{1}{1 + x^2}dx = -\text{arccot} x+C' 1+x21dx=arccotx+C (注: C ′ = C + π 2 C' = C+\frac{\pi}{2} C=C+2π)反余切相关积分

注:

  • 公式 3 是 幂函数 的积分公式,其中 α \alpha α 是任意实数且 α ≠ − 1 \alpha \neq -1 α=1。当 α = 0 \alpha=0 α=0 时,就是公式 2。
  • 公式 4 中使用 ln ⁡ ∣ x ∣ \ln|x| lnx 是因为 1 x \frac{1}{x} x1 的定义域是 ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) (-\infty, 0) \cup (0, +\infty) (,0)(0,+)。当 x > 0 x>0 x>0 时, ( ln ⁡ x ) ′ = 1 x (\ln x)' = \frac{1}{x} (lnx)=x1;当 x < 0 x<0 x<0 时, ( ln ⁡ ( − x ) ) ′ = 1 − x ⋅ ( − 1 ) = 1 x (\ln(-x))' = \frac{1}{-x} \cdot (-1) = \frac{1}{x} (ln(x))=x1(1)=x1。所以 1 x \frac{1}{x} x1 的原函数在 ( 0 , + ∞ ) (0, +\infty) (0,+) 上是 ln ⁡ x + C 1 \ln x + C_1 lnx+C1,在 ( − ∞ , 0 ) (-\infty, 0) (,0) 上是 ln ⁡ ( − x ) + C 2 \ln(-x) + C_2 ln(x)+C2。统一写作 ln ⁡ ∣ x ∣ + C \ln|x|+C lnx+C
  • 公式 13 和 14,以及公式 15 和 16,对应相同的被积函数,但结果相差一个常数(因为 arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x + \arccos x = \frac{\pi}{2} arcsinx+arccosx=2π arctan ⁡ x + arccot x = π 2 \arctan x + \text{arccot} x = \frac{\pi}{2} arctanx+arccotx=2π)。通常我们选用 arcsin ⁡ x \arcsin x arcsinx arctan ⁡ x \arctan x arctanx 作为标准形式。

有了不定积分基本公式,再结合不定积分的线性运算性质,就可以计算一些简单函数的不定积分。这种利用基本公式和线性性质直接计算不定积分的方法称为 直接积分法 (Direct Integration)。

在使用直接积分法时,有时需要先对 被积函数 进行 代数变形三角恒等变形,将其化为若干个可以应用基本公式的函数之和(或差),然后再进行积分。

例题

(一)例 1:基本公式和线性性质应用

计算下列不定积分:

  • ∫ x 3 d x \int x^3 dx x3dx
  • ∫ 3 x 2 d x \int 3x^2 dx 3x2dx
  • ∫ ( 2 − x ) d x \int(2 - \sqrt{x})dx (2x )dx
  • ∫ ( e x − 3 cos ⁡ x ) d x \int(e^x - 3\cos x)dx (ex3cosx)dx
  • ∫ ( 1 1 − x 2 − 1 ) d x \int(\frac{1}{\sqrt{1 - x^2}} - 1)dx (1x2 11)dx

解:

  • ∫ x 3 d x = x 3 + 1 3 + 1 + C = 1 4 x 4 + C \int x^3 dx = \frac{x^{3+1}}{3+1} + C = \frac{1}{4}x^4 + C x3dx=3+1x3+1+C=41x4+C
    (应用幂函数公式, α = 3 \alpha=3 α=3

  • ∫ 3 x 2 d x = 3 ∫ x 2 d x = 3 ⋅ x 2 + 1 2 + 1 + C = 3 ⋅ x 3 3 + C = x 3 + C \int 3x^2 dx = 3 \int x^2 dx = 3 \cdot \frac{x^{2+1}}{2+1} + C = 3 \cdot \frac{x^3}{3} + C = x^3 + C 3x2dx=3x2dx=32+1x2+1+C=33x3+C=x3+C
    (应用线性性质 1 和幂函数公式, α = 2 \alpha=2 α=2

  • ∫ ( 2 − x ) d x = ∫ 2 d x − ∫ x d x = 2 ∫ 1 d x − ∫ x 1 2 d x \int(2 - \sqrt{x})dx = \int 2 dx - \int \sqrt{x} dx = 2 \int 1 dx - \int x^{\frac{1}{2}} dx (2x )dx=2dxx dx=21dxx21dx
    = 2 x − x 1 2 + 1 1 2 + 1 + C = 2 x − x 3 2 3 2 + C = 2 x − 2 3 x 3 2 + C = 2x - \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = 2x - \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = 2x - \frac{2}{3}x^{\frac{3}{2}} + C =2x21+1x21+1+C=2x23x23+C=2x32x23+C
    (应用线性性质 2、常数 1 积分公式和幂函数公式, α = 1 / 2 \alpha=1/2 α=1/2

  • ∫ ( e x − 3 cos ⁡ x ) d x = ∫ e x d x − ∫ 3 cos ⁡ x d x = ∫ e x d x − 3 ∫ cos ⁡ x d x \int(e^x - 3\cos x)dx = \int e^x dx - \int 3\cos x dx = \int e^x dx - 3 \int \cos x dx (ex3cosx)dx=exdx3cosxdx=exdx3cosxdx
    = e x − 3 sin ⁡ x + C = e^x - 3\sin x + C =ex3sinx+C
    (应用线性性质 1 和 2、自然指数函数积分公式和余弦函数积分公式)

  • ∫ ( 1 1 − x 2 − 1 ) d x = ∫ 1 1 − x 2 d x − ∫ 1 d x \int(\frac{1}{\sqrt{1 - x^2}} - 1)dx = \int\frac{1}{\sqrt{1 - x^2}}dx - \int 1 dx (1x2 11)dx=1x2 1dx1dx
    = arcsin ⁡ x − x + C = \arcsin x - x + C =arcsinxx+C
    (应用线性性质 2、反正弦相关积分公式和常数 1 积分公式)
    (或写成 − arccos ⁡ x − x + C ′ -\arccos x - x + C' arccosxx+C

(二)例 2:需要先进行代数变形

计算下列不定积分:

  • ∫ x 2 x d x \int x^2\sqrt{x} dx x2x dx
  • ∫ x − 4 3 d x \int x^{-\frac{4}{3}} dx x34dx
  • ∫ x ( x 2 − 5 ) d x \int\sqrt{x}(x^2 - 5)dx x (x25)dx
  • ∫ x 2 1 + x 2 d x \int\frac{x^2}{1 + x^2}dx 1+x2x2dx
  • ∫ x 4 1 + x 2 d x \int\frac{x^4}{1 + x^2}dx 1+x2x4dx
  • ∫ ( x − 1 ) 3 x 2 d x \int\frac{(x - 1)^3}{x^2}dx x2(x1)3dx

解:

  • ∫ x 2 x d x = ∫ x 2 ⋅ x 1 2 d x = ∫ x 2 + 1 2 d x = ∫ x 5 2 d x \int x^2\sqrt{x} dx = \int x^2 \cdot x^{\frac{1}{2}} dx = \int x^{2+\frac{1}{2}} dx = \int x^{\frac{5}{2}} dx x2x dx=x2x21dx=x2+21dx=x25dx
    = x 5 2 + 1 5 2 + 1 + C = x 7 2 7 2 + C = 2 7 x 7 2 + C = \frac{x^{\frac{5}{2}+1}}{\frac{5}{2}+1} + C = \frac{x^{\frac{7}{2}}}{\frac{7}{2}} + C = \frac{2}{7}x^{\frac{7}{2}} + C =25+1x25+1+C=27x27+C=72x27+C
    (先合并幂,再用幂函数公式)

  • ∫ x − 4 3 d x = x − 4 3 + 1 − 4 3 + 1 + C = x − 1 3 − 1 3 + C = − 3 x − 1 3 + C \int x^{-\frac{4}{3}} dx = \frac{x^{-\frac{4}{3}+1}}{-\frac{4}{3}+1} + C = \frac{x^{-\frac{1}{3}}}{-\frac{1}{3}} + C = -3x^{-\frac{1}{3}} + C x34dx=34+1x34+1+C=31x31+C=3x31+C
    (直接用幂函数公式, α = − 4 / 3 \alpha = -4/3 α=4/3

  • ∫ x ( x 2 − 5 ) d x = ∫ ( x 1 2 ⋅ x 2 − 5 x 1 2 ) d x = ∫ ( x 5 2 − 5 x 1 2 ) d x \int\sqrt{x}(x^2 - 5)dx = \int (x^{\frac{1}{2}} \cdot x^2 - 5x^{\frac{1}{2}}) dx = \int (x^{\frac{5}{2}} - 5x^{\frac{1}{2}}) dx x (x25)dx=(x21x25x21)dx=(x255x21)dx
    = ∫ x 5 2 d x − 5 ∫ x 1 2 d x = x 5 2 + 1 5 2 + 1 − 5 ⋅ x 1 2 + 1 1 2 + 1 + C = \int x^{\frac{5}{2}} dx - 5 \int x^{\frac{1}{2}} dx = \frac{x^{\frac{5}{2}+1}}{\frac{5}{2}+1} - 5 \cdot \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C =x25dx5x21dx=25+1x25+1521+1x21+1+C
    = x 7 2 7 2 − 5 ⋅ x 3 2 3 2 + C = 2 7 x 7 2 − 10 3 x 3 2 + C = \frac{x^{\frac{7}{2}}}{\frac{7}{2}} - 5 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2}{7}x^{\frac{7}{2}} - \frac{10}{3}x^{\frac{3}{2}} + C =27x27523x23+C=72x27310x23+C
    (先展开,再用线性性质和幂函数公式)

  • ∫ x 2 1 + x 2 d x = ∫ ( x 2 + 1 ) − 1 1 + x 2 d x = ∫ ( 1 − 1 1 + x 2 ) d x \int\frac{x^2}{1 + x^2}dx = \int\frac{(x^2 + 1) - 1}{1 + x^2}dx = \int (1 - \frac{1}{1 + x^2}) dx 1+x2x2dx=1+x2(x2+1)1dx=(11+x21)dx
    = ∫ 1 d x − ∫ 1 1 + x 2 d x = x − arctan ⁡ x + C = \int 1 dx - \int \frac{1}{1 + x^2} dx = x - \arctan x + C =1dx1+x21dx=xarctanx+C
    (使用“加一项减一项”的技巧进行变形)

  • ∫ x 4 1 + x 2 d x = ∫ x 4 − 1 + 1 1 + x 2 d x = ∫ ( x 2 − 1 ) ( x 2 + 1 ) + 1 1 + x 2 d x \int\frac{x^4}{1 + x^2}dx = \int\frac{x^4 - 1 + 1}{1 + x^2}dx = \int\frac{(x^2 - 1)(x^2 + 1) + 1}{1 + x^2}dx 1+x2x4dx=1+x2x41+1dx=1+x2(x21)(x2+1)+1dx
    = ∫ ( ( x 2 − 1 ) + 1 1 + x 2 ) d x = ∫ x 2 d x − ∫ 1 d x + ∫ 1 1 + x 2 d x = \int ((x^2 - 1) + \frac{1}{1 + x^2}) dx = \int x^2 dx - \int 1 dx + \int \frac{1}{1 + x^2} dx =((x21)+1+x21)dx=x2dx1dx+1+x21dx
    = x 3 3 − x + arctan ⁡ x + C = \frac{x^3}{3} - x + \arctan x + C =3x3x+arctanx+C
    (使用多项式除法或凑项变形)

  • ∫ ( x − 1 ) 3 x 2 d x = ∫ x 3 − 3 x 2 + 3 x − 1 x 2 d x = ∫ ( x 3 x 2 − 3 x 2 x 2 + 3 x x 2 − 1 x 2 ) d x \int\frac{(x - 1)^3}{x^2}dx = \int\frac{x^3 - 3x^2 + 3x - 1}{x^2}dx = \int (\frac{x^3}{x^2} - \frac{3x^2}{x^2} + \frac{3x}{x^2} - \frac{1}{x^2}) dx x2(x1)3dx=x2x33x2+3x1dx=(x2x3x23x2+x23xx21)dx
    = ∫ ( x − 3 + 3 x − x − 2 ) d x = ∫ x d x − ∫ 3 d x + 3 ∫ 1 x d x − ∫ x − 2 d x = \int (x - 3 + \frac{3}{x} - x^{-2}) dx = \int x dx - \int 3 dx + 3 \int \frac{1}{x} dx - \int x^{-2} dx =(x3+x3x2)dx=xdx3dx+3x1dxx2dx
    = x 2 2 − 3 x + 3 ln ⁡ ∣ x ∣ − x − 2 + 1 − 2 + 1 + C = 1 2 x 2 − 3 x + 3 ln ⁡ ∣ x ∣ − x − 1 − 1 + C = \frac{x^2}{2} - 3x + 3\ln|x| - \frac{x^{-2+1}}{-2+1} + C = \frac{1}{2}x^2 - 3x + 3\ln|x| - \frac{x^{-1}}{-1} + C =2x23x+3lnx2+1x2+1+C=21x23x+3lnx1x1+C
    = 1 2 x 2 − 3 x + 3 ln ⁡ ∣ x ∣ + 1 x + C = \frac{1}{2}x^2 - 3x + 3\ln|x| + \frac{1}{x} + C =21x23x+3lnx+x1+C
    (先展开分子,再逐项相除,然后积分)

(三)例 3:需要先进行三角恒等变形

计算下列不定积分:

  • ∫ tan ⁡ 2 x d x \int\tan^{2}x dx tan2xdx
  • ∫ sin ⁡ 2 x 2 d x \int\sin^{2}\frac{x}{2} dx sin22xdx
  • ∫ cos ⁡ 2 x 1 + sin ⁡ x d x \int\frac{\cos^{2}x}{1 + \sin x} dx 1+sinxcos2xdx

解:

  • ∫ tan ⁡ 2 x d x = ∫ ( sec ⁡ 2 x − 1 ) d x \int\tan^{2}x dx = \int(\sec^{2}x - 1)dx tan2xdx=(sec2x1)dx (利用 tan ⁡ 2 x = sec ⁡ 2 x − 1 \tan^2 x = \sec^2 x - 1 tan2x=sec2x1
    = ∫ sec ⁡ 2 x d x − ∫ 1 d x = tan ⁡ x − x + C = \int\sec^{2}x dx - \int 1 dx = \tan x - x + C =sec2xdx1dx=tanxx+C
    (利用正割平方积分公式和常数 1 积分公式)

  • ∫ sin ⁡ 2 x 2 d x = ∫ 1 − cos ⁡ ( 2 ⋅ x 2 ) 2 d x = ∫ 1 − cos ⁡ x 2 d x \int\sin^{2}\frac{x}{2} dx = \int\frac{1 - \cos(2 \cdot \frac{x}{2})}{2}dx = \int\frac{1 - \cos x}{2} dx sin22xdx=21cos(22x)dx=21cosxdx (利用半角公式 sin ⁡ 2 θ = 1 − cos ⁡ ( 2 θ ) 2 \sin^2 \theta = \frac{1-\cos(2\theta)}{2} sin2θ=21cos(2θ)
    = 1 2 ∫ ( 1 − cos ⁡ x ) d x = 1 2 ( ∫ 1 d x − ∫ cos ⁡ x d x ) = \frac{1}{2} \int (1 - \cos x) dx = \frac{1}{2} (\int 1 dx - \int\cos x dx) =21(1cosx)dx=21(1dxcosxdx)
    = 1 2 ( x − sin ⁡ x ) + C = \frac{1}{2}(x - \sin x) + C =21(xsinx)+C
    (利用线性性质、常数 1 积分公式和余弦积分公式)

  • ∫ cos ⁡ 2 x 1 + sin ⁡ x d x = ∫ 1 − sin ⁡ 2 x 1 + sin ⁡ x d x \int\frac{\cos^2 x}{1 + \sin x} dx = \int\frac{1 - \sin^2 x}{1 + \sin x} dx 1+sinxcos2xdx=1+sinx1sin2xdx (利用 cos ⁡ 2 x = 1 − sin ⁡ 2 x \cos^2 x = 1 - \sin^2 x cos2x=1sin2x
    = ∫ ( 1 − sin ⁡ x ) ( 1 + sin ⁡ x ) 1 + sin ⁡ x d x = ∫ ( 1 − sin ⁡ x ) d x = \int\frac{(1 - \sin x)(1 + \sin x)}{1 + \sin x} dx = \int(1 - \sin x) dx =1+sinx(1sinx)(1+sinx)dx=(1sinx)dx (假设 1 + sin ⁡ x ≠ 0 1+\sin x \neq 0 1+sinx=0
    = ∫ 1 d x − ∫ sin ⁡ x d x = x − ( − cos ⁡ x ) + C = x + cos ⁡ x + C = \int 1 dx - \int\sin x dx = x - (-\cos x) + C = x + \cos x + C =1dxsinxdx=x(cosx)+C=x+cosx+C
    (利用平方差公式约分,再积分)

六、总结

本讲主要内容:

  1. 原函数 的概念: F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)
  2. 不定积分 的概念: ∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x)+C f(x)dx=F(x)+C,表示 f ( x ) f(x) f(x)全体原函数
  3. 不定积分的 几何意义:一簇相互平行的积分曲线。
  4. 不定积分的 性质
    • 与微分互为逆运算: ( ∫ f ( x ) d x ) ′ = f ( x ) (\int f(x)dx)'=f(x) (f(x)dx)=f(x) ∫ f ′ ( x ) d x = f ( x ) + C \int f'(x)dx=f(x)+C f(x)dx=f(x)+C
    • 线性性质: ∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf(x)dx = k\int f(x)dx kf(x)dx=kf(x)dx ∫ ( f ( x ) ± g ( x ) ) d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \int(f(x)\pm g(x))dx=\int f(x)dx\pm\int g(x)dx (f(x)±g(x))dx=f(x)dx±g(x)dx
  5. 基本积分公式表:由基本求导公式反推得到,是计算不定积分的基础。
  6. 直接积分法:利用基本积分公式和线性性质计算不定积分,有时需要先对被积函数进行代数或三角恒等变形。

熟练掌握基本积分公式和灵活运用代数、三角变形技巧是学好不定积分计算的关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值