§4.1不定积分的概念与性质
一、原函数问题
前面我们学习了函数的微分法,微分法的基本问题是:已知函数 f ( x ) f(x) f(x),求其导数 f ′ ( x ) f^{\prime}(x) f′(x)。例如: f ( x ) = x 2 ⇒ f ′ ( x ) = 2 x f(x)=x^2 \Rightarrow f^{\prime}(x)=2x f(x)=x2⇒f′(x)=2x。微分法也有逆运算,称为积分法,即已知 f ′ ( x ) = 2 x f^{\prime}(x)=2x f′(x)=2x,求 f ( x ) = ? f(x)=? f(x)=? 这类问题我们称为 原函数问题。
(一)原函数的定义
设 f ( x ) f(x) f(x) 是定义在某区间上的已知函数,如果存在一个函数 F ( x ) F(x) F(x),对区间上的每一点 x x x 都有 F ′ ( x ) = f ( x ) F^{\prime}(x)=f(x) F′(x)=f(x)(或 d ( F ( x ) ) = f ( x ) d x d(F(x))=f(x)dx d(F(x))=f(x)dx),则称 F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的一个 原函数 (Antiderivative)。
例如:
- ( x 2 ) ′ = 2 x (x^2)^{\prime}=2x (x2)′=2x,所以, x 2 x^2 x2 是 2 x 2x 2x 的一个原函数。
- ( sin x ) ′ = cos x (\sin x)^{\prime}=\cos x (sinx)′=cosx,所以 sin x \sin x sinx 是 cos x \cos x cosx 的一个原函数。
注: f ( x ) f(x) f(x) 是 F ( x ) F(x) F(x) 的导数, F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的原函数。
(二)原函数存在条件及唯一性
-
f ( x ) f(x) f(x) 满足什么条件存在原函数 F ( x ) F(x) F(x)?
由原函数存在定理(将在第六章给出)知,若 f ( x ) f(x) f(x) 在区间上 连续,则它在该区间上一定存在原函数。
(我们知道:初等函数在其定义区间内都是连续的,因此,初等函数在其定义区间内都有原函数,但其原函数不一定都是初等函数)。 -
如果 f ( x ) f(x) f(x) 存在原函数 F ( x ) F(x) F(x), F ( x ) F(x) F(x) 是否唯一?如何表示?
- 不唯一,存在无穷多个。
证明:若 F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的一个原函数,即 F ′ ( x ) = f ( x ) F'(x) = f(x) F′(x)=f(x),则对于任意常数 C C C,函数 F ( x ) + C F(x)+C F(x)+C 也是 f ( x ) f(x) f(x) 的原函数,因为:
( F ( x ) + C ) ′ = F ′ ( x ) + ( C ) ′ = f ( x ) + 0 = f ( x ) (F(x)+C)^{\prime} = F'(x) + (C)' = f(x) + 0 = f(x) (F(x)+C)′=F′(x)+(C)′=f(x)+0=f(x) -
f
(
x
)
f(x)
f(x) 的 全体原函数 可以表示为
F
(
x
)
+
C
F(x)+C
F(x)+C(
C
C
C 为任意常数)。
证明:设 G ( x ) G(x) G(x) 是 f ( x ) f(x) f(x) 的任意一个原函数,即 G ′ ( x ) = f ( x ) G^{\prime}(x)=f(x) G′(x)=f(x)。又已知 F ′ ( x ) = f ( x ) F^{\prime}(x)=f(x) F′(x)=f(x)。因为 G ′ ( x ) − F ′ ( x ) = f ( x ) − f ( x ) = 0 G'(x) - F'(x) = f(x) - f(x) = 0 G′(x)−F′(x)=f(x)−f(x)=0,即 ( G ( x ) − F ( x ) ) ′ = 0 (G(x)-F(x))' = 0 (G(x)−F(x))′=0。由拉格朗日中值定理的推论 2 可知,若一个函数在区间上的导数恒为零,则该函数在该区间上必为常数。因此, G ( x ) − F ( x ) = C G(x)-F(x)=C G(x)−F(x)=C,即 G ( x ) = F ( x ) + C G(x)=F(x)+C G(x)=F(x)+C,其中 C C C 为某个常数。这表明 f ( x ) f(x) f(x) 的任何一个原函数都可以表示成 F ( x ) + C F(x)+C F(x)+C 的形式。
- 不唯一,存在无穷多个。
(三)如何求原函数?
根据问题(2)的结论,求一个函数的原函数问题,实际上是求该函数的 原函数全体。这引出了不定积分的概念。
注: 本章的核心内容就是建立一系列计算不定积分(即求原函数全体)的方法。
二、不定积分的概念
定义: 函数
f
(
x
)
f(x)
f(x) 的所有原函数(原函数全体)
F
(
x
)
+
C
F(x)+ C
F(x)+C(
C
C
C 为任意常数)称为
f
(
x
)
f(x)
f(x) 的 不定积分 (Indefinite Integral),记作:
∫
f
(
x
)
d
x
=
F
(
x
)
+
C
\int f(x)dx = F(x)+C
∫f(x)dx=F(x)+C
其中:
- “ ∫ \int ∫” 称为 积分号 (Integral Sign)。
- “ x x x” 称为 积分变量 (Variable of Integration)。
- “ f ( x ) f(x) f(x)” 称为 被积函数 (Integrand)。
- “ f ( x ) d x f(x)dx f(x)dx” 称为 被积表达式 (Element of Integration)。
- “ C C C” 称为 积分常数 (Constant of Integration)。
- F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的 一个 原函数。
例如:
- 因为 ( x 2 ) ′ = 2 x (x^2)^{\prime}=2x (x2)′=2x,所以 ∫ 2 x d x = x 2 + C \int 2xdx = x^2+C ∫2xdx=x2+C。
- 因为 ( sin x ) ′ = cos x (\sin x)^{\prime}=\cos x (sinx)′=cosx,所以 ∫ cos x d x = sin x + C \int\cos xdx = \sin x+C ∫cosxdx=sinx+C。
注: 已知 F ( x ) F(x) F(x) 求 f ( x ) f(x) f(x) 是 求导数 (Differentiation) 运算;已知 f ( x ) f(x) f(x) 求 F ( x ) + C F(x)+C F(x)+C 是 求不定积分 (Indefinite Integration) 运算。这两种运算互为逆运算。
三、不定积分的几何意义
不定积分 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x)+C ∫f(x)dx=F(x)+C 表示的是一个函数族(family of functions)。对每一个确定的常数 C C C, y = F ( x ) + C y=F(x)+C y=F(x)+C 在几何上都表示一条确定的曲线,称为 积分曲线 (Integral Curve)。
因此,不定积分 ∫ f ( x ) d x \int f(x)dx ∫f(x)dx 的几何意义是:一簇相互平行的积分曲线 y = F ( x ) + C y=F(x)+C y=F(x)+C,其中任意一条曲线 y = F ( x ) + C y=F(x)+C y=F(x)+C 都可以通过 y = F ( x ) y=F(x) y=F(x) 沿 y y y 轴方向平移 C C C 个单位得到。
注: 这簇积分曲线
y
=
F
(
x
)
+
C
y=F(x)+C
y=F(x)+C 在同一点
x
x
x 处的切线斜率都相同,均为
f
(
x
)
f(x)
f(x),因为
(
F
(
x
)
+
C
)
′
=
F
′
(
x
)
=
f
(
x
)
(F(x)+C)^{\prime}=F'(x)=f(x)
(F(x)+C)′=F′(x)=f(x)。
例 1:
求经过点 ( 1 , 3 ) (1,3) (1,3),且其切线的斜率为 2 x 2x 2x 的曲线方程。
解:
此题是已知切线斜率函数
f
(
x
)
=
y
′
=
2
x
f(x)=y'=2x
f(x)=y′=2x,求通过特定点
(
1
,
3
)
(1,3)
(1,3) 的原函数
F
(
x
)
F(x)
F(x)。
首先,求
f
(
x
)
=
2
x
f(x)=2x
f(x)=2x 的不定积分:
∫
2
x
d
x
=
x
2
+
C
\int 2xdx = x^2+C
∫2xdx=x2+C
这表示满足切线斜率为
2
x
2x
2x 的所有曲线(积分曲线簇)的方程为
y
=
x
2
+
C
y = x^2+C
y=x2+C。
然后,将点
(
1
,
3
)
(1,3)
(1,3) 代入曲线簇方程,以确定常数
C
C
C:
3
=
(
1
)
2
+
C
⇒
3
=
1
+
C
⇒
C
=
2
3 = (1)^2 + C \Rightarrow 3 = 1 + C \Rightarrow C = 2
3=(1)2+C⇒3=1+C⇒C=2
所以,所求的曲线方程为
y
=
x
2
+
2
y = x^2+2
y=x2+2。
四、不定积分的性质
(一)不定积分与微分的关系(互为逆运算)
-
先积分再求导等于被积函数本身:
( ∫ f ( x ) d x ) ′ = f ( x ) (\int f(x)dx)^{\prime}=f(x) (∫f(x)dx)′=f(x)
或者写成微分形式:
d ( ∫ f ( x ) d x ) = f ( x ) d x d(\int f(x)dx)=f(x)dx d(∫f(x)dx)=f(x)dx
证明: 因为 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x)+C ∫f(x)dx=F(x)+C,其中 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x),所以 ( ∫ f ( x ) d x ) ′ = ( F ( x ) + C ) ′ = F ′ ( x ) + 0 = f ( x ) (\int f(x)dx)' = (F(x)+C)' = F'(x) + 0 = f(x) (∫f(x)dx)′=(F(x)+C)′=F′(x)+0=f(x)。 -
先求导再积分等于原函数加上任意常数:
∫ f ′ ( x ) d x = f ( x ) + C \int f^{\prime}(x)dx = f(x)+C ∫f′(x)dx=f(x)+C
或者写成微分形式:
∫ d ( f ( x ) ) = f ( x ) + C \int d(f(x)) = f(x)+C ∫d(f(x))=f(x)+C
证明: 由原函数定义,因为 ( f ( x ) ) ′ = f ′ ( x ) (f(x))' = f'(x) (f(x))′=f′(x),所以 f ( x ) f(x) f(x) 是 f ′ ( x ) f'(x) f′(x) 的一个原函数。根据不定积分的定义, f ′ ( x ) f'(x) f′(x) 的不定积分(即全体原函数)就是 f ( x ) + C f(x)+C f(x)+C。
(二)不定积分的线性性质
设函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 的原函数存在, k k k 为非零常数。
-
常数因子可以提到积分号外:
∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf(x)dx = k\int f(x)dx ∫kf(x)dx=k∫f(x)dx
证明: 设 F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的一个原函数,即 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)。则 ∫ f ( x ) d x = F ( x ) + C 1 \int f(x)dx = F(x)+C_1 ∫f(x)dx=F(x)+C1。我们需要证明 k ( F ( x ) + C 1 ) k(F(x)+C_1) k(F(x)+C1) 是 k f ( x ) kf(x) kf(x) 的不定积分。
( k ∫ f ( x ) d x ) ′ = ( k ( F ( x ) + C 1 ) ) ′ = k F ′ ( x ) + 0 = k f ( x ) (k\int f(x)dx)' = (k(F(x)+C_1))' = k F'(x) + 0 = kf(x) (k∫f(x)dx)′=(k(F(x)+C1))′=kF′(x)+0=kf(x)。
因此, k ∫ f ( x ) d x k\int f(x)dx k∫f(x)dx 是 k f ( x ) kf(x) kf(x) 的原函数全体(注意,任意常数 k C 1 kC_1 kC1 仍是任意常数)。 -
和(差)的积分等于积分的和(差):
∫ ( f ( x ) ± g ( x ) ) d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \int(f(x)\pm g(x))dx=\int f(x)dx\pm\int g(x)dx ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx
证明: 设 F ( x ) , G ( x ) F(x), G(x) F(x),G(x) 分别是 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的一个原函数,即 F ′ ( x ) = f ( x ) , G ′ ( x ) = g ( x ) F'(x)=f(x), G'(x)=g(x) F′(x)=f(x),G′(x)=g(x)。
则 ( ∫ f ( x ) d x ± ∫ g ( x ) d x ) ′ = ( F ( x ) + C 1 ± ( G ( x ) + C 2 ) ) ′ = ( F ( x ) ± G ( x ) + ( C 1 ± C 2 ) ) ′ = F ′ ( x ) ± G ′ ( x ) + 0 = f ( x ) ± g ( x ) (\int f(x)dx \pm \int g(x)dx)' = (F(x)+C_1 \pm (G(x)+C_2))' = (F(x) \pm G(x) + (C_1 \pm C_2))' = F'(x) \pm G'(x) + 0 = f(x) \pm g(x) (∫f(x)dx±∫g(x)dx)′=(F(x)+C1±(G(x)+C2))′=(F(x)±G(x)+(C1±C2))′=F′(x)±G′(x)+0=f(x)±g(x)。
因此, ∫ f ( x ) d x ± ∫ g ( x ) d x \int f(x)dx\pm\int g(x)dx ∫f(x)dx±∫g(x)dx 是 f ( x ) ± g ( x ) f(x) \pm g(x) f(x)±g(x) 的原函数全体(注意,任意常数 C 1 ± C 2 C_1 \pm C_2 C1±C2 仍是任意常数)。
五、不定积分基本公式
本节给出不定积分的基本公式,这是计算不定积分的基础,必须熟记。这些公式可以直接由求导公式反推得到。
序号 | 求导公式 | 不定积分公式 | 名称(补充) |
---|---|---|---|
1 | ( C ) ′ = 0 (C)^{\prime}=0 (C)′=0 | ∫ 0 d x = C \int 0 dx = C ∫0dx=C | 零函数积分 |
2 | ( x ) ′ = 1 (x)'=1 (x)′=1 | ∫ 1 d x = ∫ d x = x + C \int 1 dx = \int dx = x+C ∫1dx=∫dx=x+C | 常数 1 积分 |
3 | ( x α + 1 ) ′ = ( α + 1 ) x α (x^{\alpha+1})'=(\alpha+1)x^\alpha (xα+1)′=(α+1)xα | ∫ x α d x = x α + 1 α + 1 + C ( α ≠ − 1 ) \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1}+C \quad (\alpha \neq -1) ∫xαdx=α+1xα+1+C(α=−1) | 幂函数积分 |
4 | ( ln ∣ x ∣ ) ′ = 1 x (\ln\lvert x\rvert)' = \frac{1}{x} (ln∣x∣)′=x1 | ∫ 1 x d x = ln ∣ x ∣ + C \int \frac{1}{x} \, dx = \ln\lvert x\rvert + C ∫x1dx=ln∣x∣+C | 倒数函数积分 |
5 | ( a x ) ′ = a x ln a (a^x)'=a^x\ln a (ax)′=axlna | ∫ a x d x = a x ln a + C ( a > 0 , a ≠ 1 ) \int a^xdx = \frac{a^x}{\ln a}+C \quad (a>0, a\neq 1) ∫axdx=lnaax+C(a>0,a=1) | 指数函数积分 |
6 | ( e x ) ′ = e x (e^x)'=e^x (ex)′=ex | ∫ e x d x = e x + C \int e^xdx = e^x+C ∫exdx=ex+C | 自然指数函数积分 |
7 | ( sin x ) ′ = cos x (\sin x)'=\cos x (sinx)′=cosx | ∫ cos x d x = sin x + C \int\cos xdx = \sin x+C ∫cosxdx=sinx+C | 余弦函数积分 |
8 | ( cos x ) ′ = − sin x (\cos x)'=-\sin x (cosx)′=−sinx | ∫ sin x d x = − cos x + C \int\sin xdx = -\cos x+C ∫sinxdx=−cosx+C | 正弦函数积分 |
9 | ( tan x ) ′ = sec 2 x (\tan x)'=\sec^2 x (tanx)′=sec2x | ∫ sec 2 x d x = tan x + C \int\sec^2 xdx = \tan x+C ∫sec2xdx=tanx+C | 正割平方积分 |
10 | ( cot x ) ′ = − csc 2 x (\cot x)'=-\csc^2 x (cotx)′=−csc2x | ∫ csc 2 x d x = − cot x + C \int\csc^2 xdx = -\cot x+C ∫csc2xdx=−cotx+C | 余割平方积分 |
11 | ( sec x ) ′ = sec x tan x (\sec x)'=\sec x\tan x (secx)′=secxtanx | ∫ sec x tan x d x = sec x + C \int\sec x\tan xdx = \sec x+C ∫secxtanxdx=secx+C | 正割正切乘积积分 |
12 | ( csc x ) ′ = − csc x cot x (\csc x)'=-\csc x\cot x (cscx)′=−cscxcotx | ∫ csc x cot x d x = − csc x + C \int\csc x\cot xdx = -\csc x+C ∫cscxcotxdx=−cscx+C | 余割余切乘积积分 |
13 | ( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1 - x^2}} (arcsinx)′=1−x21 | ∫ 1 1 − x 2 d x = arcsin x + C \int\frac{1}{\sqrt{1 - x^2}}dx = \arcsin x+C ∫1−x21dx=arcsinx+C | 反正弦相关积分 |
14 | ( arccos x ) ′ = − 1 1 − x 2 (\arccos x)'=-\frac{1}{\sqrt{1 - x^2}} (arccosx)′=−1−x21 | ∫ 1 1 − x 2 d x = − arccos x + C ′ \int\frac{1}{\sqrt{1 - x^2}}dx = -\arccos x+C' ∫1−x21dx=−arccosx+C′ (注: C ′ = C + π 2 C' = C+\frac{\pi}{2} C′=C+2π) | 反余弦相关积分 |
15 | ( arctan x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1 + x^2} (arctanx)′=1+x21 | ∫ 1 1 + x 2 d x = arctan x + C \int\frac{1}{1 + x^2}dx = \arctan x+C ∫1+x21dx=arctanx+C | 反正切相关积分 |
16 | ( arccot x ) ′ = − 1 1 + x 2 (\text{arccot} x)'=-\frac{1}{1 + x^2} (arccotx)′=−1+x21 | ∫ 1 1 + x 2 d x = − arccot x + C ′ \int\frac{1}{1 + x^2}dx = -\text{arccot} x+C' ∫1+x21dx=−arccotx+C′ (注: C ′ = C + π 2 C' = C+\frac{\pi}{2} C′=C+2π) | 反余切相关积分 |
注:
- 公式 3 是 幂函数 的积分公式,其中 α \alpha α 是任意实数且 α ≠ − 1 \alpha \neq -1 α=−1。当 α = 0 \alpha=0 α=0 时,就是公式 2。
- 公式 4 中使用 ln ∣ x ∣ \ln|x| ln∣x∣ 是因为 1 x \frac{1}{x} x1 的定义域是 ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) (-\infty, 0) \cup (0, +\infty) (−∞,0)∪(0,+∞)。当 x > 0 x>0 x>0 时, ( ln x ) ′ = 1 x (\ln x)' = \frac{1}{x} (lnx)′=x1;当 x < 0 x<0 x<0 时, ( ln ( − x ) ) ′ = 1 − x ⋅ ( − 1 ) = 1 x (\ln(-x))' = \frac{1}{-x} \cdot (-1) = \frac{1}{x} (ln(−x))′=−x1⋅(−1)=x1。所以 1 x \frac{1}{x} x1 的原函数在 ( 0 , + ∞ ) (0, +\infty) (0,+∞) 上是 ln x + C 1 \ln x + C_1 lnx+C1,在 ( − ∞ , 0 ) (-\infty, 0) (−∞,0) 上是 ln ( − x ) + C 2 \ln(-x) + C_2 ln(−x)+C2。统一写作 ln ∣ x ∣ + C \ln|x|+C ln∣x∣+C。
- 公式 13 和 14,以及公式 15 和 16,对应相同的被积函数,但结果相差一个常数(因为 arcsin x + arccos x = π 2 \arcsin x + \arccos x = \frac{\pi}{2} arcsinx+arccosx=2π, arctan x + arccot x = π 2 \arctan x + \text{arccot} x = \frac{\pi}{2} arctanx+arccotx=2π)。通常我们选用 arcsin x \arcsin x arcsinx 和 arctan x \arctan x arctanx 作为标准形式。
有了不定积分基本公式,再结合不定积分的线性运算性质,就可以计算一些简单函数的不定积分。这种利用基本公式和线性性质直接计算不定积分的方法称为 直接积分法 (Direct Integration)。
在使用直接积分法时,有时需要先对 被积函数 进行 代数变形 或 三角恒等变形,将其化为若干个可以应用基本公式的函数之和(或差),然后再进行积分。
例题
(一)例 1:基本公式和线性性质应用
计算下列不定积分:
- ∫ x 3 d x \int x^3 dx ∫x3dx
- ∫ 3 x 2 d x \int 3x^2 dx ∫3x2dx
- ∫ ( 2 − x ) d x \int(2 - \sqrt{x})dx ∫(2−x)dx
- ∫ ( e x − 3 cos x ) d x \int(e^x - 3\cos x)dx ∫(ex−3cosx)dx
- ∫ ( 1 1 − x 2 − 1 ) d x \int(\frac{1}{\sqrt{1 - x^2}} - 1)dx ∫(1−x21−1)dx
解:
-
∫ x 3 d x = x 3 + 1 3 + 1 + C = 1 4 x 4 + C \int x^3 dx = \frac{x^{3+1}}{3+1} + C = \frac{1}{4}x^4 + C ∫x3dx=3+1x3+1+C=41x4+C
(应用幂函数公式, α = 3 \alpha=3 α=3) -
∫ 3 x 2 d x = 3 ∫ x 2 d x = 3 ⋅ x 2 + 1 2 + 1 + C = 3 ⋅ x 3 3 + C = x 3 + C \int 3x^2 dx = 3 \int x^2 dx = 3 \cdot \frac{x^{2+1}}{2+1} + C = 3 \cdot \frac{x^3}{3} + C = x^3 + C ∫3x2dx=3∫x2dx=3⋅2+1x2+1+C=3⋅3x3+C=x3+C
(应用线性性质 1 和幂函数公式, α = 2 \alpha=2 α=2) -
∫ ( 2 − x ) d x = ∫ 2 d x − ∫ x d x = 2 ∫ 1 d x − ∫ x 1 2 d x \int(2 - \sqrt{x})dx = \int 2 dx - \int \sqrt{x} dx = 2 \int 1 dx - \int x^{\frac{1}{2}} dx ∫(2−x)dx=∫2dx−∫xdx=2∫1dx−∫x21dx
= 2 x − x 1 2 + 1 1 2 + 1 + C = 2 x − x 3 2 3 2 + C = 2 x − 2 3 x 3 2 + C = 2x - \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = 2x - \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = 2x - \frac{2}{3}x^{\frac{3}{2}} + C =2x−21+1x21+1+C=2x−23x23+C=2x−32x23+C
(应用线性性质 2、常数 1 积分公式和幂函数公式, α = 1 / 2 \alpha=1/2 α=1/2) -
∫ ( e x − 3 cos x ) d x = ∫ e x d x − ∫ 3 cos x d x = ∫ e x d x − 3 ∫ cos x d x \int(e^x - 3\cos x)dx = \int e^x dx - \int 3\cos x dx = \int e^x dx - 3 \int \cos x dx ∫(ex−3cosx)dx=∫exdx−∫3cosxdx=∫exdx−3∫cosxdx
= e x − 3 sin x + C = e^x - 3\sin x + C =ex−3sinx+C
(应用线性性质 1 和 2、自然指数函数积分公式和余弦函数积分公式) -
∫ ( 1 1 − x 2 − 1 ) d x = ∫ 1 1 − x 2 d x − ∫ 1 d x \int(\frac{1}{\sqrt{1 - x^2}} - 1)dx = \int\frac{1}{\sqrt{1 - x^2}}dx - \int 1 dx ∫(1−x21−1)dx=∫1−x21dx−∫1dx
= arcsin x − x + C = \arcsin x - x + C =arcsinx−x+C
(应用线性性质 2、反正弦相关积分公式和常数 1 积分公式)
(或写成 − arccos x − x + C ′ -\arccos x - x + C' −arccosx−x+C′)
(二)例 2:需要先进行代数变形
计算下列不定积分:
- ∫ x 2 x d x \int x^2\sqrt{x} dx ∫x2xdx
- ∫ x − 4 3 d x \int x^{-\frac{4}{3}} dx ∫x−34dx
- ∫ x ( x 2 − 5 ) d x \int\sqrt{x}(x^2 - 5)dx ∫x(x2−5)dx
- ∫ x 2 1 + x 2 d x \int\frac{x^2}{1 + x^2}dx ∫1+x2x2dx
- ∫ x 4 1 + x 2 d x \int\frac{x^4}{1 + x^2}dx ∫1+x2x4dx
- ∫ ( x − 1 ) 3 x 2 d x \int\frac{(x - 1)^3}{x^2}dx ∫x2(x−1)3dx
解:
-
∫ x 2 x d x = ∫ x 2 ⋅ x 1 2 d x = ∫ x 2 + 1 2 d x = ∫ x 5 2 d x \int x^2\sqrt{x} dx = \int x^2 \cdot x^{\frac{1}{2}} dx = \int x^{2+\frac{1}{2}} dx = \int x^{\frac{5}{2}} dx ∫x2xdx=∫x2⋅x21dx=∫x2+21dx=∫x25dx
= x 5 2 + 1 5 2 + 1 + C = x 7 2 7 2 + C = 2 7 x 7 2 + C = \frac{x^{\frac{5}{2}+1}}{\frac{5}{2}+1} + C = \frac{x^{\frac{7}{2}}}{\frac{7}{2}} + C = \frac{2}{7}x^{\frac{7}{2}} + C =25+1x25+1+C=27x27+C=72x27+C
(先合并幂,再用幂函数公式) -
∫ x − 4 3 d x = x − 4 3 + 1 − 4 3 + 1 + C = x − 1 3 − 1 3 + C = − 3 x − 1 3 + C \int x^{-\frac{4}{3}} dx = \frac{x^{-\frac{4}{3}+1}}{-\frac{4}{3}+1} + C = \frac{x^{-\frac{1}{3}}}{-\frac{1}{3}} + C = -3x^{-\frac{1}{3}} + C ∫x−34dx=−34+1x−34+1+C=−31x−31+C=−3x−31+C
(直接用幂函数公式, α = − 4 / 3 \alpha = -4/3 α=−4/3) -
∫ x ( x 2 − 5 ) d x = ∫ ( x 1 2 ⋅ x 2 − 5 x 1 2 ) d x = ∫ ( x 5 2 − 5 x 1 2 ) d x \int\sqrt{x}(x^2 - 5)dx = \int (x^{\frac{1}{2}} \cdot x^2 - 5x^{\frac{1}{2}}) dx = \int (x^{\frac{5}{2}} - 5x^{\frac{1}{2}}) dx ∫x(x2−5)dx=∫(x21⋅x2−5x21)dx=∫(x25−5x21)dx
= ∫ x 5 2 d x − 5 ∫ x 1 2 d x = x 5 2 + 1 5 2 + 1 − 5 ⋅ x 1 2 + 1 1 2 + 1 + C = \int x^{\frac{5}{2}} dx - 5 \int x^{\frac{1}{2}} dx = \frac{x^{\frac{5}{2}+1}}{\frac{5}{2}+1} - 5 \cdot \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C =∫x25dx−5∫x21dx=25+1x25+1−5⋅21+1x21+1+C
= x 7 2 7 2 − 5 ⋅ x 3 2 3 2 + C = 2 7 x 7 2 − 10 3 x 3 2 + C = \frac{x^{\frac{7}{2}}}{\frac{7}{2}} - 5 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2}{7}x^{\frac{7}{2}} - \frac{10}{3}x^{\frac{3}{2}} + C =27x27−5⋅23x23+C=72x27−310x23+C
(先展开,再用线性性质和幂函数公式) -
∫ x 2 1 + x 2 d x = ∫ ( x 2 + 1 ) − 1 1 + x 2 d x = ∫ ( 1 − 1 1 + x 2 ) d x \int\frac{x^2}{1 + x^2}dx = \int\frac{(x^2 + 1) - 1}{1 + x^2}dx = \int (1 - \frac{1}{1 + x^2}) dx ∫1+x2x2dx=∫1+x2(x2+1)−1dx=∫(1−1+x21)dx
= ∫ 1 d x − ∫ 1 1 + x 2 d x = x − arctan x + C = \int 1 dx - \int \frac{1}{1 + x^2} dx = x - \arctan x + C =∫1dx−∫1+x21dx=x−arctanx+C
(使用“加一项减一项”的技巧进行变形) -
∫ x 4 1 + x 2 d x = ∫ x 4 − 1 + 1 1 + x 2 d x = ∫ ( x 2 − 1 ) ( x 2 + 1 ) + 1 1 + x 2 d x \int\frac{x^4}{1 + x^2}dx = \int\frac{x^4 - 1 + 1}{1 + x^2}dx = \int\frac{(x^2 - 1)(x^2 + 1) + 1}{1 + x^2}dx ∫1+x2x4dx=∫1+x2x4−1+1dx=∫1+x2(x2−1)(x2+1)+1dx
= ∫ ( ( x 2 − 1 ) + 1 1 + x 2 ) d x = ∫ x 2 d x − ∫ 1 d x + ∫ 1 1 + x 2 d x = \int ((x^2 - 1) + \frac{1}{1 + x^2}) dx = \int x^2 dx - \int 1 dx + \int \frac{1}{1 + x^2} dx =∫((x2−1)+1+x21)dx=∫x2dx−∫1dx+∫1+x21dx
= x 3 3 − x + arctan x + C = \frac{x^3}{3} - x + \arctan x + C =3x3−x+arctanx+C
(使用多项式除法或凑项变形) -
∫ ( x − 1 ) 3 x 2 d x = ∫ x 3 − 3 x 2 + 3 x − 1 x 2 d x = ∫ ( x 3 x 2 − 3 x 2 x 2 + 3 x x 2 − 1 x 2 ) d x \int\frac{(x - 1)^3}{x^2}dx = \int\frac{x^3 - 3x^2 + 3x - 1}{x^2}dx = \int (\frac{x^3}{x^2} - \frac{3x^2}{x^2} + \frac{3x}{x^2} - \frac{1}{x^2}) dx ∫x2(x−1)3dx=∫x2x3−3x2+3x−1dx=∫(x2x3−x23x2+x23x−x21)dx
= ∫ ( x − 3 + 3 x − x − 2 ) d x = ∫ x d x − ∫ 3 d x + 3 ∫ 1 x d x − ∫ x − 2 d x = \int (x - 3 + \frac{3}{x} - x^{-2}) dx = \int x dx - \int 3 dx + 3 \int \frac{1}{x} dx - \int x^{-2} dx =∫(x−3+x3−x−2)dx=∫xdx−∫3dx+3∫x1dx−∫x−2dx
= x 2 2 − 3 x + 3 ln ∣ x ∣ − x − 2 + 1 − 2 + 1 + C = 1 2 x 2 − 3 x + 3 ln ∣ x ∣ − x − 1 − 1 + C = \frac{x^2}{2} - 3x + 3\ln|x| - \frac{x^{-2+1}}{-2+1} + C = \frac{1}{2}x^2 - 3x + 3\ln|x| - \frac{x^{-1}}{-1} + C =2x2−3x+3ln∣x∣−−2+1x−2+1+C=21x2−3x+3ln∣x∣−−1x−1+C
= 1 2 x 2 − 3 x + 3 ln ∣ x ∣ + 1 x + C = \frac{1}{2}x^2 - 3x + 3\ln|x| + \frac{1}{x} + C =21x2−3x+3ln∣x∣+x1+C
(先展开分子,再逐项相除,然后积分)
(三)例 3:需要先进行三角恒等变形
计算下列不定积分:
- ∫ tan 2 x d x \int\tan^{2}x dx ∫tan2xdx
- ∫ sin 2 x 2 d x \int\sin^{2}\frac{x}{2} dx ∫sin22xdx
- ∫ cos 2 x 1 + sin x d x \int\frac{\cos^{2}x}{1 + \sin x} dx ∫1+sinxcos2xdx
解:
-
∫ tan 2 x d x = ∫ ( sec 2 x − 1 ) d x \int\tan^{2}x dx = \int(\sec^{2}x - 1)dx ∫tan2xdx=∫(sec2x−1)dx (利用 tan 2 x = sec 2 x − 1 \tan^2 x = \sec^2 x - 1 tan2x=sec2x−1)
= ∫ sec 2 x d x − ∫ 1 d x = tan x − x + C = \int\sec^{2}x dx - \int 1 dx = \tan x - x + C =∫sec2xdx−∫1dx=tanx−x+C
(利用正割平方积分公式和常数 1 积分公式) -
∫ sin 2 x 2 d x = ∫ 1 − cos ( 2 ⋅ x 2 ) 2 d x = ∫ 1 − cos x 2 d x \int\sin^{2}\frac{x}{2} dx = \int\frac{1 - \cos(2 \cdot \frac{x}{2})}{2}dx = \int\frac{1 - \cos x}{2} dx ∫sin22xdx=∫21−cos(2⋅2x)dx=∫21−cosxdx (利用半角公式 sin 2 θ = 1 − cos ( 2 θ ) 2 \sin^2 \theta = \frac{1-\cos(2\theta)}{2} sin2θ=21−cos(2θ))
= 1 2 ∫ ( 1 − cos x ) d x = 1 2 ( ∫ 1 d x − ∫ cos x d x ) = \frac{1}{2} \int (1 - \cos x) dx = \frac{1}{2} (\int 1 dx - \int\cos x dx) =21∫(1−cosx)dx=21(∫1dx−∫cosxdx)
= 1 2 ( x − sin x ) + C = \frac{1}{2}(x - \sin x) + C =21(x−sinx)+C
(利用线性性质、常数 1 积分公式和余弦积分公式) -
∫ cos 2 x 1 + sin x d x = ∫ 1 − sin 2 x 1 + sin x d x \int\frac{\cos^2 x}{1 + \sin x} dx = \int\frac{1 - \sin^2 x}{1 + \sin x} dx ∫1+sinxcos2xdx=∫1+sinx1−sin2xdx (利用 cos 2 x = 1 − sin 2 x \cos^2 x = 1 - \sin^2 x cos2x=1−sin2x)
= ∫ ( 1 − sin x ) ( 1 + sin x ) 1 + sin x d x = ∫ ( 1 − sin x ) d x = \int\frac{(1 - \sin x)(1 + \sin x)}{1 + \sin x} dx = \int(1 - \sin x) dx =∫1+sinx(1−sinx)(1+sinx)dx=∫(1−sinx)dx (假设 1 + sin x ≠ 0 1+\sin x \neq 0 1+sinx=0)
= ∫ 1 d x − ∫ sin x d x = x − ( − cos x ) + C = x + cos x + C = \int 1 dx - \int\sin x dx = x - (-\cos x) + C = x + \cos x + C =∫1dx−∫sinxdx=x−(−cosx)+C=x+cosx+C
(利用平方差公式约分,再积分)
六、总结
本讲主要内容:
- 原函数 的概念: F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)。
- 不定积分 的概念: ∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x)+C ∫f(x)dx=F(x)+C,表示 f ( x ) f(x) f(x) 的 全体原函数。
- 不定积分的 几何意义:一簇相互平行的积分曲线。
- 不定积分的 性质:
- 与微分互为逆运算: ( ∫ f ( x ) d x ) ′ = f ( x ) (\int f(x)dx)'=f(x) (∫f(x)dx)′=f(x), ∫ f ′ ( x ) d x = f ( x ) + C \int f'(x)dx=f(x)+C ∫f′(x)dx=f(x)+C。
- 线性性质: ∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf(x)dx = k\int f(x)dx ∫kf(x)dx=k∫f(x)dx, ∫ ( f ( x ) ± g ( x ) ) d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \int(f(x)\pm g(x))dx=\int f(x)dx\pm\int g(x)dx ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx。
- 基本积分公式表:由基本求导公式反推得到,是计算不定积分的基础。
- 直接积分法:利用基本积分公式和线性性质计算不定积分,有时需要先对被积函数进行代数或三角恒等变形。
熟练掌握基本积分公式和灵活运用代数、三角变形技巧是学好不定积分计算的关键。