高等数学第二章---导数与微分(2.4~2.5)

§2.4 高阶导数

一、高阶导数的定义

观察函数 y = sin ⁡ x y = \sin x y=sinx 的导数过程:

  • 一阶导数: y ′ = cos ⁡ x y' = \cos x y=cosx
  • 二阶导数: ( y ′ ) ′ = − sin ⁡ x (y')' = -\sin x (y)=sinx

一般定义:

  • 一阶导数 y ′ y' y 的导数称为二阶导数,记作:
    y ′ ′ ,   f ′ ′ ( x ) ,   d 2 y d x 2 ,   d 2 f d x 2 y'', \ f''(x), \ \frac{d^2 y}{dx^2}, \ \frac{d^2 f}{dx^2} y′′, f′′(x), dx2d2y, dx2d2f
  • 二阶导数的导数称为三阶导数,记作:
    y ′ ′ ′ ,   f ′ ′ ′ ( x ) ,   d 3 y d x 3 ,   d 3 f d x 3 y''', \ f'''(x), \ \frac{d^3 y}{dx^3}, \ \frac{d^3 f}{dx^3} y′′′, f′′′(x), dx3d3y, dx3d3f
  • 以此类推 n − 1 n-1 n1 阶导数的导数称为 n n n 阶导数,记作:
    y ( n ) ,   f ( n ) ( x ) ,   d n y d x n ,   d n f d x n y^{(n)}, \ f^{(n)}(x), \ \frac{d^n y}{dx^n}, \ \frac{d^n f}{dx^n} y(n), f(n)(x), dxndny, dxndnf

注:

  1. 高阶导数通过逐阶求导计算,求导法则和公式均适用。
  2. 二阶导数的定义式:
    f ′ ′ ( x 0 ) = lim ⁡ x → x 0 f ′ ( x ) − f ′ ( x 0 ) x − x 0 f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} f′′(x0)=xx0limxx0f(x)f(x0)
  3. 导数的线性性质:
    ( u ( x ) ± v ( x ) ) ( n ) = u ( n ) ( x ) ± v ( n ) ( x ) (u(x) \pm v(x))^{(n)} = u^{(n)}(x) \pm v^{(n)}(x) (u(x)±v(x))(n)=u(n)(x)±v(n)(x)
  4. 莱布尼茨公式(乘积的高阶导数):
    ( u ( x ) v ( x ) ) ( n ) = ∑ k = 0 n C n k u ( n − k ) ( x ) v ( k ) ( x ) (u(x)v(x))^{(n)} = \sum_{k=0}^n C_n^k u^{(n-k)}(x) v^{(k)}(x) (u(x)v(x))(n)=k=0nCnku(nk)(x)v(k)(x)
    其中 C n k = n ! k ! ( n − k ) ! C_n^k = \frac{n!}{k!(n-k)!} Cnk=k!(nk)!n!

例1 求 y = a x + b y = ax + b y=ax+b 的二阶导数。

例2 求下列函数的 n n n 阶导数:

  1. y = e a x y = e^{ax} y=eax
  2. y = sin ⁡ x y = \sin x y=sinx
  3. y = cos ⁡ x y = \cos x y=cosx
  4. y = ln ⁡ ( 1 + x ) y = \ln(1+x) y=ln(1+x)

例3 求 y = e 2 x x 2 y = e^{2x}x^2 y=e2xx2 的 20 阶导数。

例4 求 y = f ( a x 2 + b ) y = f(ax^2 + b) y=f(ax2+b) 的二阶导数。

例5 方程 y − x e y = 1 y - xe^y = 1 yxey=1 确定 y y y x x x 的函数,求 y ′ ′ ∣ x = 0 y''|_{x=0} y′′x=0

例6 方程 x − 2 y + sin ⁡ y = 0 x - 2y + \sin y = 0 x2y+siny=0 确定 y = f ( x ) y = f(x) y=f(x),求 d 2 y d x 2 \frac{d^2 y}{dx^2} dx2d2y

例7 设参数方程:
{ x = a ( 1 − sin ⁡ t ) y = a ( 1 − cos ⁡ t ) \begin{cases} x = a(1 - \sin t) \\ y = a(1 - \cos t) \end{cases} {x=a(1sint)y=a(1cost)
d 2 y d x 2 \frac{d^2 y}{dx^2} dx2d2y


作业

  1. 求下列函数的二阶导数:

    • (1) y = 2 x 2 + ln ⁡ x y = 2x^2 + \ln x y=2x2+lnx
    • (2) y = x cos ⁡ x y = x \cos x y=xcosx
    • (3) y = ln ⁡ ( 1 + x 2 ) y = \ln(1+x^2) y=ln(1+x2)
    • (4) y = x e x 2 y = x e^{x^2} y=xex2
  2. 方程 y − x e y = 1 y - xe^y = 1 yxey=1 确定 y y y x x x 的函数,求 d 2 y d x 2 ∣ x = 0 \left.\frac{d^2 y}{dx^2}\right|_{x=0} dx2d2y x=0

  3. 参数方程:
    { x = t 2 2 y = 1 − t \begin{cases} x = \frac{t^2}{2} \\ y = 1 - t \end{cases} {x=2t2y=1t
    d 2 y d x 2 \frac{d^2 y}{dx^2} dx2d2y


§2.5 微分

一、微分的定义

几何背景:
在这里插入图片描述
分析:面积的改变量 Δ y \Delta y Δy由两部分组成,第1部分为 2 x Δ x 2x\Delta x 2xΔx,这是关于 Δ x \Delta x Δx的线性函数(线性主部),第2部分为 ( Δ x ) 2 (\Delta x)^{2} (Δx)2,是当 Δ x → 0 \Delta x \to 0 Δx0时的高阶无穷小量。即面积的改变量由线性主部 + 高阶无穷小组成,即 Δ y = ( x + Δ x ) 2 − x 2 = 2 x Δ x + ( Δ x ) 2 \Delta y = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta x)^{2} Δy=(x+Δx)2x2=2xΔx+(Δx)2,其中线性主部起主要作用,我们把线性主部 2 x Δ x 2x\Delta x 2xΔx称为微分。

1.定义:

y = f ( x ) y = f(x) y=f(x),自变量 x x x x 0 x_0 x0处有改变量 Δ x \Delta x Δx,相应的有函数改变量 Δ y = f ( x + Δ x ) − f ( x ) \Delta y=f(x + \Delta x)-f(x) Δy=f(x+Δx)f(x),若 Δ y = A Δ x + o ( Δ x ) \Delta y = A\Delta x+o(\Delta x) Δy=AΔx+o(Δx),其中 A A A Δ x \Delta x Δx无关,则称函数 y = f ( x ) y = f(x) y=f(x) x 0 x_0 x0处可微,线性主部 A Δ x A\Delta x AΔx称为函数 y = f ( x ) y = f(x) y=f(x) x 0 x_0 x0处的微分,记作 d y dy dy d f df df,即 d y = A Δ x dy = A\Delta x dy=AΔx


2.可微的条件

  1. 必要条件:若 f ( x ) f(x) f(x) x 0 x_0 x0 处可微,则必可导,且 A = f ′ ( x 0 ) A = f'(x_0) A=f(x0)
  2. 充分条件:若 f ( x ) f(x) f(x) x 0 x_0 x0 处可导,则必可微。

注:

  1. 函数在一点处可导与可微等价。

  2. 自变量改变量与自变量的微分相等:
    Δ x = d x   ( d x = ( x ) ′ Δ x = Δ x ) \Delta x = dx \ (dx=(x)'\Delta x=\Delta x) Δx=dx (dx=(x)Δx=Δx)

  3. 微分计算公式:

    • x 0 x_0 x0 处:
      d y ∣ x = x 0 = f ′ ( x 0 ) Δ x = f ′ ( x 0 ) d x dy|_{x=x_0} = f'(x_0) \Delta x = f'(x_0) dx dyx=x0=f(x0)Δx=f(x0)dx
    • 一般情况:
      d y = f ′ ( x ) Δ x = f ′ ( x ) d x dy = f'(x) \Delta x = f'(x) dx dy=f(x)Δx=f(x)dx
      d y d x = f ′ ( x ) \frac{dy}{dx} = f'(x) dxdy=f(x)(微商表示法)。

求下列函数的微分
(1)$ y = x ^ { 2 } $ 当x从1改变到1.01时的微分;
(2)$ y = l n x $


二、微分的几何意义

我们知道导数 f ′ ( x 0 ) f'(x_{0}) f(x0)的几何意义表示该点处切线的斜率,那么微分 f ′ ( x 0 ) Δ x f'(x_{0})\Delta x f(x0)Δx在几何上表示什么呢?如图所示。

在这里插入图片描述
因此, T N = f ′ ( x 0 ) × M 0 N = f ′ ( x 0 ) × Δ x = d y TN = f'(x_0)\times M_0N = f'(x_0)\times\Delta x = dy TN=f(x0)×M0N=f(x0)×Δx=dy,即微分在几何上表示切线上纵坐标的改变量,而函数改变量表示同一点处曲线上的纵坐标改变量,二者不一样。

  • 导数 f ′ ( x 0 ) f'(x_0) f(x0):曲线在 x 0 x_0 x0 处切线的斜率。
  • 微分 f ′ ( x 0 ) Δ x f'(x_0) \Delta x f(x0)Δx:切线上纵坐标的改变量(线性近似)。
  • 函数改变量 Δ y \Delta y Δy:曲线上纵坐标的真实改变量。

三、微分法则

  1. d ( u ± v ) = d u ± d v d(u \pm v) = du \pm dv d(u±v)=du±dv
  2. d ( u v ) = v d u + u d v d(uv) = v du + u dv d(uv)=vdu+udv
  3. d ( u v ) = v d u − u d v v 2 d\left(\frac{u}{v}\right) = \frac{v du - u dv}{v^2} d(vu)=v2vduudv

四、微分形式的不变性

  1. y = f ( u ) , d y = f ′ ( u ) d u y=f(u),dy=f'(u)du y=f(u),dy=f(u)du

  2. y = f ( u ) , u = φ ( x ) , d y = ( f ( φ ( x ) ) ′ d x = f ′ ( u ) × φ ′ ( x ) d x = f ′ ( u ) d u y=f(u),u=\varphi(x),dy=(f(\varphi(x))'dx=f'(u)\times\varphi'(x)dx=f'(u)du y=f(u),u=φ(x),dy=(f(φ(x))dx=f(u)×φ(x)dx=f(u)du

即不论 u 是自变量还是中间变量,最后函数的微分是一个形式 d y = f ′ ( u ) d u dy=f'(u)du dy=f(u)du ,这称为微分形式的不变性。利用微分形式的不变性计算复合函数的微分可以简便一些。
求复合函数的微分

(1) y = e a x + b x 2 y = e ^ { a x + b x ^ { 2 } } y=eax+bx2
(2) y = sin ⁡ ( 2 x + 3 ) y = \sin ( 2 x + 3 ) y=sin(2x+3)


五、微分的近似计算

近似公式:
f ( x ) f(x) f(x) x 0 x_0 x0 处可导,则:
f ( x 0 + Δ x ) ≈ f ( x 0 ) + f ′ ( x 0 ) Δ x f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x f(x0+Δx)f(x0)+f(x0)Δx
误差项: Δ y − d y = o ( Δ x ) \Delta y - dy = o(\Delta x) Δydy=o(Δx)


六、高阶微分

  • 一阶微分 d y = f ′ ( x ) d x dy = f'(x) dx dy=f(x)dx
  • 二阶微分
    d 2 y = d ( d y ) = f ′ ′ ( x ) ( d x ) 2 = f ′ ′ ( x ) d x 2 d^2 y = d(dy) = f''(x) (dx)^2 = f''(x) dx^2 d2y=d(dy)=f′′(x)(dx)2=f′′(x)dx2

作业

  1. 已知 y = x 2 − x y = x^2 - x y=x2x,求 x = 2 , Δ x = 0.01 x=2, \Delta x=0.01 x=2,Δx=0.01 时的 Δ y \Delta y Δy d y dy dy
  2. 求下列函数的微分:
    • (1) y = 1 x + 2 x y = \frac{1}{x} + 2\sqrt{x} y=x1+2x
    • (2) y = x sin ⁡ 2 x y = x \sin 2x y=xsin2x
    • (3) y = x x 2 + 1 y = \frac{x}{\sqrt{x^2 + 1}} y=x2+1 x
    • (4) y = ln ⁡ 2 ( 1 − x ) y = \ln^2(1-x) y=ln2(1x)
  3. 计算 996 3 \sqrt[3]{996} 3996 的近似值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值