§2.4 高阶导数
一、高阶导数的定义
观察函数 y = sin x y = \sin x y=sinx 的导数过程:
- 一阶导数: y ′ = cos x y' = \cos x y′=cosx
- 二阶导数: ( y ′ ) ′ = − sin x (y')' = -\sin x (y′)′=−sinx
一般定义:
- 一阶导数
y
′
y'
y′ 的导数称为二阶导数,记作:
y ′ ′ , f ′ ′ ( x ) , d 2 y d x 2 , d 2 f d x 2 y'', \ f''(x), \ \frac{d^2 y}{dx^2}, \ \frac{d^2 f}{dx^2} y′′, f′′(x), dx2d2y, dx2d2f - 二阶导数的导数称为三阶导数,记作:
y ′ ′ ′ , f ′ ′ ′ ( x ) , d 3 y d x 3 , d 3 f d x 3 y''', \ f'''(x), \ \frac{d^3 y}{dx^3}, \ \frac{d^3 f}{dx^3} y′′′, f′′′(x), dx3d3y, dx3d3f - 以此类推,
n
−
1
n-1
n−1 阶导数的导数称为
n
n
n 阶导数,记作:
y ( n ) , f ( n ) ( x ) , d n y d x n , d n f d x n y^{(n)}, \ f^{(n)}(x), \ \frac{d^n y}{dx^n}, \ \frac{d^n f}{dx^n} y(n), f(n)(x), dxndny, dxndnf
注:
- 高阶导数通过逐阶求导计算,求导法则和公式均适用。
- 二阶导数的定义式:
f ′ ′ ( x 0 ) = lim x → x 0 f ′ ( x ) − f ′ ( x 0 ) x − x 0 f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} f′′(x0)=x→x0limx−x0f′(x)−f′(x0) - 导数的线性性质:
( u ( x ) ± v ( x ) ) ( n ) = u ( n ) ( x ) ± v ( n ) ( x ) (u(x) \pm v(x))^{(n)} = u^{(n)}(x) \pm v^{(n)}(x) (u(x)±v(x))(n)=u(n)(x)±v(n)(x) - 莱布尼茨公式(乘积的高阶导数):
( u ( x ) v ( x ) ) ( n ) = ∑ k = 0 n C n k u ( n − k ) ( x ) v ( k ) ( x ) (u(x)v(x))^{(n)} = \sum_{k=0}^n C_n^k u^{(n-k)}(x) v^{(k)}(x) (u(x)v(x))(n)=k=0∑nCnku(n−k)(x)v(k)(x)
其中 C n k = n ! k ! ( n − k ) ! C_n^k = \frac{n!}{k!(n-k)!} Cnk=k!(n−k)!n!。
例1 求 y = a x + b y = ax + b y=ax+b 的二阶导数。
例2 求下列函数的 n n n 阶导数:
- y = e a x y = e^{ax} y=eax
- y = sin x y = \sin x y=sinx
- y = cos x y = \cos x y=cosx
- y = ln ( 1 + x ) y = \ln(1+x) y=ln(1+x)
例3 求 y = e 2 x x 2 y = e^{2x}x^2 y=e2xx2 的 20 阶导数。
例4 求 y = f ( a x 2 + b ) y = f(ax^2 + b) y=f(ax2+b) 的二阶导数。
例5 方程 y − x e y = 1 y - xe^y = 1 y−xey=1 确定 y y y 是 x x x 的函数,求 y ′ ′ ∣ x = 0 y''|_{x=0} y′′∣x=0。
例6 方程 x − 2 y + sin y = 0 x - 2y + \sin y = 0 x−2y+siny=0 确定 y = f ( x ) y = f(x) y=f(x),求 d 2 y d x 2 \frac{d^2 y}{dx^2} dx2d2y。
例7 设参数方程:
{
x
=
a
(
1
−
sin
t
)
y
=
a
(
1
−
cos
t
)
\begin{cases} x = a(1 - \sin t) \\ y = a(1 - \cos t) \end{cases}
{x=a(1−sint)y=a(1−cost)
求
d
2
y
d
x
2
\frac{d^2 y}{dx^2}
dx2d2y。
作业
-
求下列函数的二阶导数:
- (1) y = 2 x 2 + ln x y = 2x^2 + \ln x y=2x2+lnx
- (2) y = x cos x y = x \cos x y=xcosx
- (3) y = ln ( 1 + x 2 ) y = \ln(1+x^2) y=ln(1+x2)
- (4) y = x e x 2 y = x e^{x^2} y=xex2
-
方程 y − x e y = 1 y - xe^y = 1 y−xey=1 确定 y y y 是 x x x 的函数,求 d 2 y d x 2 ∣ x = 0 \left.\frac{d^2 y}{dx^2}\right|_{x=0} dx2d2y x=0。
-
参数方程:
{ x = t 2 2 y = 1 − t \begin{cases} x = \frac{t^2}{2} \\ y = 1 - t \end{cases} {x=2t2y=1−t
求 d 2 y d x 2 \frac{d^2 y}{dx^2} dx2d2y。
§2.5 微分
一、微分的定义
几何背景:
分析:面积的改变量
Δ
y
\Delta y
Δy由两部分组成,第1部分为
2
x
Δ
x
2x\Delta x
2xΔx,这是关于
Δ
x
\Delta x
Δx的线性函数(线性主部),第2部分为
(
Δ
x
)
2
(\Delta x)^{2}
(Δx)2,是当
Δ
x
→
0
\Delta x \to 0
Δx→0时的高阶无穷小量。即面积的改变量由线性主部 + 高阶无穷小组成,即
Δ
y
=
(
x
+
Δ
x
)
2
−
x
2
=
2
x
Δ
x
+
(
Δ
x
)
2
\Delta y = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta x)^{2}
Δy=(x+Δx)2−x2=2xΔx+(Δx)2,其中线性主部起主要作用,我们把线性主部
2
x
Δ
x
2x\Delta x
2xΔx称为微分。
1.定义:
设 y = f ( x ) y = f(x) y=f(x),自变量 x x x在 x 0 x_0 x0处有改变量 Δ x \Delta x Δx,相应的有函数改变量 Δ y = f ( x + Δ x ) − f ( x ) \Delta y=f(x + \Delta x)-f(x) Δy=f(x+Δx)−f(x),若 Δ y = A Δ x + o ( Δ x ) \Delta y = A\Delta x+o(\Delta x) Δy=AΔx+o(Δx),其中 A A A与 Δ x \Delta x Δx无关,则称函数 y = f ( x ) y = f(x) y=f(x)在 x 0 x_0 x0处可微,线性主部 A Δ x A\Delta x AΔx称为函数 y = f ( x ) y = f(x) y=f(x)在 x 0 x_0 x0处的微分,记作 d y dy dy或 d f df df,即 d y = A Δ x dy = A\Delta x dy=AΔx
2.可微的条件
- 必要条件:若 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处可微,则必可导,且 A = f ′ ( x 0 ) A = f'(x_0) A=f′(x0)。
- 充分条件:若 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处可导,则必可微。
注:
-
函数在一点处可导与可微等价。
-
自变量改变量与自变量的微分相等:
Δ x = d x ( d x = ( x ) ′ Δ x = Δ x ) \Delta x = dx \ (dx=(x)'\Delta x=\Delta x) Δx=dx (dx=(x)′Δx=Δx) -
微分计算公式:
- 在
x
0
x_0
x0 处:
d y ∣ x = x 0 = f ′ ( x 0 ) Δ x = f ′ ( x 0 ) d x dy|_{x=x_0} = f'(x_0) \Delta x = f'(x_0) dx dy∣x=x0=f′(x0)Δx=f′(x0)dx - 一般情况:
d y = f ′ ( x ) Δ x = f ′ ( x ) d x dy = f'(x) \Delta x = f'(x) dx dy=f′(x)Δx=f′(x)dx
即 d y d x = f ′ ( x ) \frac{dy}{dx} = f'(x) dxdy=f′(x)(微商表示法)。
- 在
x
0
x_0
x0 处:
例求下列函数的微分
(1)$ y = x ^ { 2 } $ 当x从1改变到1.01时的微分;
(2)$ y = l n x $
二、微分的几何意义
我们知道导数 f ′ ( x 0 ) f'(x_{0}) f′(x0)的几何意义表示该点处切线的斜率,那么微分 f ′ ( x 0 ) Δ x f'(x_{0})\Delta x f′(x0)Δx在几何上表示什么呢?如图所示。
因此,
T
N
=
f
′
(
x
0
)
×
M
0
N
=
f
′
(
x
0
)
×
Δ
x
=
d
y
TN = f'(x_0)\times M_0N = f'(x_0)\times\Delta x = dy
TN=f′(x0)×M0N=f′(x0)×Δx=dy,即微分在几何上表示切线上纵坐标的改变量,而函数改变量表示同一点处曲线上的纵坐标改变量,二者不一样。
- 导数 f ′ ( x 0 ) f'(x_0) f′(x0):曲线在 x 0 x_0 x0 处切线的斜率。
- 微分 f ′ ( x 0 ) Δ x f'(x_0) \Delta x f′(x0)Δx:切线上纵坐标的改变量(线性近似)。
- 函数改变量 Δ y \Delta y Δy:曲线上纵坐标的真实改变量。
三、微分法则
- d ( u ± v ) = d u ± d v d(u \pm v) = du \pm dv d(u±v)=du±dv
- d ( u v ) = v d u + u d v d(uv) = v du + u dv d(uv)=vdu+udv
- d ( u v ) = v d u − u d v v 2 d\left(\frac{u}{v}\right) = \frac{v du - u dv}{v^2} d(vu)=v2vdu−udv
四、微分形式的不变性
-
y = f ( u ) , d y = f ′ ( u ) d u y=f(u),dy=f'(u)du y=f(u),dy=f′(u)du
-
y = f ( u ) , u = φ ( x ) , d y = ( f ( φ ( x ) ) ′ d x = f ′ ( u ) × φ ′ ( x ) d x = f ′ ( u ) d u y=f(u),u=\varphi(x),dy=(f(\varphi(x))'dx=f'(u)\times\varphi'(x)dx=f'(u)du y=f(u),u=φ(x),dy=(f(φ(x))′dx=f′(u)×φ′(x)dx=f′(u)du
即不论 u 是自变量还是中间变量,最后函数的微分是一个形式
d
y
=
f
′
(
u
)
d
u
dy=f'(u)du
dy=f′(u)du ,这称为微分形式的不变性。利用微分形式的不变性计算复合函数的微分可以简便一些。
例 求复合函数的微分
(1)
y
=
e
a
x
+
b
x
2
y = e ^ { a x + b x ^ { 2 } }
y=eax+bx2
(2)
y
=
sin
(
2
x
+
3
)
y = \sin ( 2 x + 3 )
y=sin(2x+3)
五、微分的近似计算
近似公式:
若
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处可导,则:
f
(
x
0
+
Δ
x
)
≈
f
(
x
0
)
+
f
′
(
x
0
)
Δ
x
f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x
f(x0+Δx)≈f(x0)+f′(x0)Δx
误差项:
Δ
y
−
d
y
=
o
(
Δ
x
)
\Delta y - dy = o(\Delta x)
Δy−dy=o(Δx)。
六、高阶微分
- 一阶微分: d y = f ′ ( x ) d x dy = f'(x) dx dy=f′(x)dx
- 二阶微分:
d 2 y = d ( d y ) = f ′ ′ ( x ) ( d x ) 2 = f ′ ′ ( x ) d x 2 d^2 y = d(dy) = f''(x) (dx)^2 = f''(x) dx^2 d2y=d(dy)=f′′(x)(dx)2=f′′(x)dx2
作业
- 已知 y = x 2 − x y = x^2 - x y=x2−x,求 x = 2 , Δ x = 0.01 x=2, \Delta x=0.01 x=2,Δx=0.01 时的 Δ y \Delta y Δy 和 d y dy dy。
- 求下列函数的微分:
- (1) y = 1 x + 2 x y = \frac{1}{x} + 2\sqrt{x} y=x1+2x
- (2) y = x sin 2 x y = x \sin 2x y=xsin2x
- (3) y = x x 2 + 1 y = \frac{x}{\sqrt{x^2 + 1}} y=x2+1x
- (4) y = ln 2 ( 1 − x ) y = \ln^2(1-x) y=ln2(1−x)
- 计算 996 3 \sqrt[3]{996} 3996 的近似值。