前言
- 通过今天的学习,我掌握了OpenCV中有关直方图均衡化的原理和操作
一、直方图的定义
- 直方图是对数据进行统计的一种方法,并且将统计值组织到一系列实现定义好的 bin 当中。
- 直方图:反映图像像素分布的统计图,横坐标就是图像像素的取值,纵坐标是该像素的个数。
- 增加对比度:简单来说就是让图像黑的更黑,白的更白
- 直方图一般可以用来统计图像不同像素点的个数
二、绘制直方图
以像素值为横坐标,对应的像素值个数为纵坐标绘制一个直方图
- hist=cv2.calcHist(images, channels, mask, histSize, ranges)
images
:输入图像列表,可以是一幅或多幅图像(通常是灰度图像或者彩色图像的各个通道)。channels
:一个包含整数的列表,指示在每个图像上计算直方图的通道编号。如果输入图像是灰度图,它的值就是 [0];如果是彩色图像的话,传入的参数可以是 [0],[1],[2] 它们分别对应着通道 B,G,R。mask
(可选):一个与输入图像尺寸相同的二值掩模图像,其中非零元素标记了参与直方图计算的区域,None为全部计算。histSize
:一个整数列表,也就是直方图的区间个数(BIN 的数目)。用中括号括起来,例如:[256]。ranges
:每维数据的取值范围,它是一个二维列表,每一维对应一个通道的最小值和最大值,例如对灰度图像可能是[0, 256]
。- 返回值hist 是一个长度为255的数组,数组中的每个值表示图像中对应灰度等级的像素计数
获取直方图的最小值、最大值(这里指的是对应像素点的个数)及其对应最小值的位置索引、最大值的位置索引
- minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(hist)
def draw(img):
# 获取像素点统计信息
hist = cv.calcHist([img],[0],None,[256],[0,256])
# 获取像素点个数的最值及其索引
minVal,maxVal,minloc,maxloc = cv.minMaxLoc(hist)
# 创建全黑背景,这里为了兼容性设置为三通道
black = np.zeros((256,256,3),np.uint8)
# 限制直方图的高
high = int(0.9 * 256)
# 绘制直方图
for i in range(256):
# 归一化像素点个数,防止越界
# hist[i]仍然是一个数组,要将其中元素取出使用
h = int(hist[i].item()/maxVal*high)
cv.line(black,(i,256),(i,256-h),(255,0,0),1)
# 显示图像
cv.imshow('img',back)
cv.waitKey(0)
cv.destroyAllWindows()
三、直方图均衡化
-
- 通俗的讲,就是遍历图像的像素统计出灰度值的个数、比例与累计比例,并重新映射到0-255范围(也可以是其他范围)内
- 通俗的讲,就是遍历图像的像素统计出灰度值的个数、比例与累计比例,并重新映射到0-255范围(也可以是其他范围)内
1.自适应直方图均衡化
-
通过调整图像像素值的分布,使得图像的对比度和亮度得到改善。
-
假设给出某个图像的像素统计表,如下
-
接下来我们就要进行计算,就是将要缩放的范围(通常是缩放到0-255,所以就是255-0)乘以累计比例,得到新的像素值,并将新的像素值放到对应的位置上,比如像素值为50的像素点,将其累计比例乘以255,也就是0.33乘以255得到84.15,取整后得到84,并将84放在原图像中像素值为50的地方
tips:这一过程看似会导致相邻像素值在某些情况下更接近,但实际上它增强了全局对比度 -
dst = cv.equalizeHist(imgGray)
-
imgGray为需要直方图均衡化的灰度图,返回值为处理后的图像
img = cv.imread(r"D:\AI\笔记课件\images\zhifang.png",cv.IMREAD_GRAYSCALE)
img1 = cv.equalizeHist(img)
cv.imshow('img',img)
cv.imshow('img1',img1)
cv.waitKey(0)
cv.destroyAllWindows()
- 该方法没有考虑局部特征和全局对比度的差异,可能导致导致噪点出现或者图像中出现过度增强的区域
2.对比度受限的自适应直方图均衡化
- 将图像划分为小区域,在每一个小区域内(默认8×8)进行直方图均衡化,以解决局部过度增强的问题
其主要步骤为:
- 图像分块(Tiling):
- 图像首先被划分为多个不重叠的小块(tiles)。这样做的目的是因为在全局直方图均衡化中,单一的直方图无法反映图像各个局部区域的差异性。通过局部处理,AHE能够更好地适应图像内部的不同光照和对比度特性。(tiles 的 大小默认是 8x8)
- 计算子区域直方图:
- 对于每个小块,独立计算其内部像素的灰度直方图。直方图反映了该区域内像素值的分布情况。
- 子区域直方图均衡化:
- 对每个小块的直方图执行直方图均衡化操作。这涉及重新分配像素值,以便在整个小块内更均匀地分布。均衡化过程会增加低频像素的数量,减少高频像素的数量,从而提高整个小块的对比度。
- 对比度限制(Contrast Limiting):
- 如果有噪声的话,噪声会被放大。为了防止过大的对比度增强导致噪声放大,出现了限制对比度自适应直方图均衡化(CLAHE)。CLAHE会在直方图均衡化过程中引入一个对比度限制参数。当某一小块的直方图在均衡化后出现极端值时,会对直方图进行平滑处理(使用线性或非线性的钳制函数),确保对比度增强在一个合理的范围内。
- 重采样和邻域像素融合:
- 由于小块之间是不重叠的,直接拼接经过均衡化处理的小块会产生明显的边界效应。因此,在CLAHE中通常采用重采样技术来消除这种效应,比如通过双线性插值将相邻小块的均衡化结果进行平滑过渡,使最终图像看起来更为自然和平滑。
- 合成输出图像:
- 将所有小块均衡化后的结果整合在一起,得到最终的自适应直方图均衡化后的图像。
clahe = cv2.createCLAHE(clipLimit=None, tileGridSize=None)
img = clahe.apply(image)
img = cv.imread(r"D:\AI\笔记课件\images\zhifang.png")
img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
img_equal = cv.equalizeHist(img_gray)
clahe = cv.createCLAHE()
img_clahe = clahe.apply(img_gray)
cv.imshow('img_equal',img_equal)
cv.imshow('img_clahe',img_clahe)
cv.waitKey(0)
cv.destroyAllWindows()
THE END