1227.分巧克力
儿童节那天有 K𝐾 位小朋友到小明家做客。
小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N𝑁 块巧克力,其中第 i𝑖 块是 Hi×Wi𝐻𝑖×𝑊𝑖 的方格组成的长方形。
为了公平起见,小明需要从这 N𝑁 块巧克力中切出 K𝐾 块巧克力分给小朋友们。
切出的巧克力需要满足:
- 形状是正方形,边长是整数
- 大小相同
例如一块 6×56×5 的巧克力可以切出 66 块 2×22×2 的巧克力或者 22 块 3×33×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入格式
第一行包含两个整数 N𝑁 和 K𝐾。
以下 N𝑁 行每行包含两个整数 Hi𝐻𝑖 和 Wi𝑊𝑖。
输入保证每位小朋友至少能获得一块 1×11×1 的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
数据范围
1≤N,K≤1051≤𝑁,𝐾≤105,
1≤Hi,Wi≤105
第一眼看题的思路很乱,考虑的是切出的最大边长需要受到所有巧克力中最小规格巧克力大小的束缚,后来又感觉如果这堆巧克力中大部分巧克力都远大于最小规格的巧克力,就可以不使用最小规格的巧克力。也没有明确题目要求的最大边长和巧克力的大小有什么关系。
听完讲解后明白不要先去考虑整体所有的巧克力怎么划分,先考虑普普通通的其中一块巧克力怎么分析,里面任意一块巧克力的长假设为x,宽假设为y。则这块巧克力可以切到的最大边长a,可以切(x/a)*(y/a)块。然后可以推到更多巧克力,如果每块巧克力都按边长为a来切,切出的总数是否满足k块。若满足k块则长度小于a的绝对都满足条件,应该去考虑长度大于a的;如果总数不够k块,说明当前的a过大不能满足条件即降低a的值即可。继续判断直到找到满足条件且边长最大的a。接下来分析a的取值:
结合题意本题的a的取值在1-100000之间即答案一定在有限区间内;
存在一个判断条件:当a取得一些值时,满足所有巧克力可以切出的块数大于等于k这个条件。小于等于a的值都可以满足这个块数大于等于k的条件,而我们要取的是满足这个条件时这些a的取值中的最大值,假设为amax。
当a大于amax时都不能满足切出块数大于等于k这个条件,当a小于等于amax时可以满足块数大于等于k这个条件。
即判断条件:当a取某一值时满足可以切出的巧克力的块数大于等于k。这个判断条件具有二段性。
结合上述分析可知二分法适用于此题。
代码:
import java.util.*;
public class Main {
static int N = 100010;
static int K = 100010;
static int n;
static int k;
static int[][] arr = new int[N][2];
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
n = scan.nextInt();
k = scan.nextInt();
for(int i=1;i<=n;i++)
{
arr[i][0] = scan.nextInt();
arr[i][1] = scan.nextInt();
}
int l = 1;
int r = N;
while(l<r) {
int mid = (l+r+1)/2; //更新方式为l = mid 时需要使mid的值向上取整否则可能陷入死循环。
if(!check(mid)) { //最大边长过大,切出的巧克力数不能小于k
r = mid - 1; //取mid时仍然不满足切出的巧克力数大于等于k,故r取mid-1
}else {
l = mid; //取mid时满足条件,故最大边长应该在mid到r之间
}
}
System.out.println(r);
}
public static boolean check(int num) {
int ret = 0;
for(int i=1;i<=n;i++) {
ret += (arr[i][0]/num) * (arr[i][1]/num);
if(ret>=k) return true;
}
return false;
}
}