减法优化器优化TVFEMD参数(带宽阈值和B样条阶数),包络谱故障特征能量比为适应度函数研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于减法优化器的TVFEMD参数优化研究(以包络谱故障特征能量比为适应度函数)

一、TVFEMD算法原理及参数敏感性分析

二、减法优化器(SABO)的核心机制与优势

三、包络谱故障特征能量比的适应度函数设计

四、优化流程与实现步骤

五、案例验证与性能对比

六、创新性与应用价值

七、结论与展望

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于减法优化器的TVFEMD参数优化研究(以包络谱故障特征能量比为适应度函数)

一、TVFEMD算法原理及参数敏感性分析

TVFEMD(时变滤波经验模态分解)是在传统EMD基础上引入时变滤波器B样条近似筛分的创新方法,其核心改进包括:

  1. 自适应截止频率调整:通过局部信号特性动态调整滤波器截止频率,有效解决EMD的间歇性问题(如高频成分捕捉不足)。
  2. B样条阶数控制:采用B样条滤波器实现筛分过程,平衡了频率分离精度与计算效率,尤其提升了低采样率下的稳定性。
  3. 带宽阈值调节:通过固有模式函数带宽标准,自适应调整信号的低频成分提取能力,抑制噪声干扰。

关键参数影响

  • 带宽阈值(0.1≤阈值≤1) :值越小,分解精度越高但计算量激增;接近1时可能导致模态欠分解。
  • B样条阶数(5≤阶数≤30) :高阶数增强频谱分辨率但易引入过平滑,低阶数可能导致模态混淆。
    传统TVFEMD依赖人工经验设定参数,存在主观性强局部最优陷阱,影响故障诊断的可靠性。

二、减法优化器(SABO)的核心机制与优势

减法优化器(Subtraction-Average-Based Optimizer, SABO)是一种新型元启发式算法,其创新点在于:

  1. 种群更新策略:通过父代解间的差值加权生成新解,数学表达为:

    其中η为随机权重,xj和xk为随机选择的父代解。

  2. 全局-局部平衡:差值操作兼顾探索(大范围搜索)与开发(局部精细化调整),避免早熟收敛。

  3. 参数无关性:仅需设置种群规模和迭代次数,简化了超参数调优过程。

对比传统优化器
实验表明,SABO在52个基准函数测试中,收敛速度和全局寻优能力优于灰狼算法(GWO)、粒子群算法(PSO)等,尤其适合高维非线性优化问题。


三、包络谱故障特征能量比的适应度函数设计

计算流程

  1. 包络解调:对TVFEMD分解得到的IMF分量进行Hilbert变换,提取包络信号。

  2. 频谱分析:计算包络谱,定位故障特征频率fcfc​及其谐波(通常取前4次谐波)。

  3. 能量比计算

    其中E(pfc)为第p次谐波能量,E总​为包络谱总能量。
    合理性分析

  • 故障特征增强:能量比最大化直接关联故障频率的显著性,抑制噪声和无关成分。
  • 抗干扰性:相比包络熵等单指标,能量比综合多谐波信息,鲁棒性更强。

四、优化流程与实现步骤
  1. 参数初始化
    • SABO参数:种群规模N=15N=15,最大迭代次数T=20T=20。
    • TVFEMD参数范围:带宽阈值0.1,10.1,1
      ,B样条阶数5,305,30
  2. 迭代优化
    a. TVFEMD分解:对每个候选参数组合进行信号分解,生成IMF分量。
    b. 适应度评估:计算各IMF的包络谱能量比,选取最大值作为当前解的适应度值。
    c. SABO更新:通过减法操作生成新种群,重复直至满足终止条件。
  3. 结果输出:保存最优参数组合,重构信号并生成分解图、频谱图及参数收敛曲线。

关键代码逻辑(Matlab示例):

% 初始化SABO参数
options.PopulationSize = 15;
options.MaxIterations = 20;

% 定义适应度函数
fobj = @(params) fitness_TVFEMD(params, signal, fcf);

% 执行优化
[best_params, best_fitness] = SABO(fobj, [0.1 5], [1 30], options);

% 应用最优参数分解信号
imf = TVFEMD(signal, best_params(1), best_params(2));

五、案例验证与性能对比
  1. 轴承故障诊断
    • 数据集:西储大学轴承数据(130.mat),故障特征频率fc=3.5848×1796/60≈107.5Hzfc​=3.5848×1796/60≈107.5Hz。
    • 结果:优化后带宽阈值=0.109,B样条阶数=9,IMF2分量能量比提升40%,包络谱中3倍频特征显著。
  2. 对比实验
    • PSO-TVFEMD:收敛速度慢,易陷入局部最优(能量比低15%)。
    • 未优化TVFEMD:参数随机设定(阈值=0.5,阶数=15),故障频率被噪声淹没。

可视化输出

  • 参数变化曲线:显示带宽阈值与B样条阶数随迭代的收敛过程。
  • 3D分解图:直观展示不同IMF的时频分布,验证模态分离效果。

六、创新性与应用价值
  1. 方法创新
    • 首例SABO-TVFEMD结合:突破传统优化算法(如PSO、GWO)的局限性,提升参数寻优效率。
    • 多指标可视化:同步输出分解图、频谱图、参数变化图,增强结果可解释性。
  2. 工程应用
    • 故障诊断:适用于齿轮箱、轴承等旋转机械的早期故障检测。
    • 预测模型集成:可与LSTM、BiGRU等结合,构建TVFEMD-SABO-BiLSTM预测框架,提升时序数据建模精度。

七、结论与展望

本研究通过减法优化器实现了TVFEMD参数的自适应优化,结合包络谱故障特征能量比,显著提升了故障特征提取的准确性。未来方向包括:

  1. 多目标优化扩展:引入模态纯度、计算耗时等多目标评价体系。
  2. 实时性改进:结合在线学习策略,适应动态信号环境。
  3. 跨领域应用:探索在电力负荷预测、地震信号分析等领域的迁移潜力。

以上方法已通过Matlab代码实现,用户可通过调整适应度函数(如切换为包络熵)灵活适配不同场景,代码详见文章末尾。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]闫宏亮,杨泽心,王镇涛,等.基于SABO算法的PMSM弱磁和MTPA控制方法[J].科学技术与工程, 2024, 24(30):13005-13012.

[2]吴俊烨,张浩,顾波,等.基于SABO优化VMD与K-means++的机器人磨削颤振识别[J].组合机床与自动化加工技术, 2024(6):181-184.

[3]吕鸿,王玲,朱远哲,等.基于改进SABO-BP算法的电网谐波预测[J].广东电力, 2024, 37(2):56-65.

[4]梁山,齐兵,李浩,等.基于LCLSABO-KELM滚动轴承故障诊断方法研究[J].制造技术与机床(2):17[2025-04-05].

🌈Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值