- 获取电影数据:首先,你需要获取电影数据。这可以通过各种方式完成,例如从公开的电影数据库网站(如IMDb)下载数据,或者使用API(如TMDb的API)。
- 数据清洗:然后,你需要清洗数据,即处理和解析获取到的原始数据,以便于进行后续的分析。这可能包括处理缺失值、异常值、格式转换等。
- 数据分析:接下来,你可以进行数据分析。这可能包括计算电影的平均评分、找出最受欢迎的电影类型、分析演员的年龄分布等。
- 数据可视化:最后,你可以使用Python的可视化库(如Matplotlib、Seaborn等)将分析结果可视化。这可能包括生成条形图、饼图、散点图等。
mport pandas as pd
import matplotlib.pyplot as plt
# 1. 获取电影数据
# 假设你已经有一个CSV文件包含了电影信息
df = pd.read_csv('movies.csv')
# 2. 数据清洗
# 假设CSV文件中的评分是一个字符串,需要转换为浮点数
df['rating'] = df['rating'].astype(float)
# 3. 数据分析
# 计算平均评分
average_rating = df['rating'].mean()
print(f'Average rating: {average_rating}')
# 4. 数据可视化
# 绘制评分分布直方图
plt.hist(df['rating&#