BrainNet Viewer使用教程(包括安装教程)

前言

BrainNet Viewer是由由北京师范大学开发的一个应用于Matlab的工具包,主要用于脑网络的可视化,可以帮助研究人员以快速、简单和灵活的方式从不同层次可视化结构和功能连接模式。

一、下载安装

工具包网址:NITRC:BrainNet 查看器:工具/资源信息

网页显示如下:

在绿色的"Execution Options"中的"Download Now"中选择符合自己电脑系统的压缩文件(.zip)下载。

解压之前下载的文件至MATLAB的安装目录下("\Matlab 2023a\BrainNetViewer_20191031")

打开MATLAB,点击"环境"中的"设置路径"

点击"添加并包含子文件夹"

选择之前复制在MATLAB文件夹下的解压包并确定。

当MATLAB搜索路径中出现下面这些路径时即添加成功。

最后点击保存,则安装成功。

二、使用

在命令行窗口中输入"BrainNet Viewer"

出现下面界面说明启动成功

点击"File->Load File",出现下面页面,共有四个文件可供选择Surface file(表层文件)、Data file(node)(节点文件)、Data file(edge)(边文件)、Mapping file(映射文件)

选择相应文件

Surface文件在包内已经有基本模型文件,也能自己进行模型构建。

node文件和edge文件需要自行进行创建。

在加载文件后会出现设置窗口

选择自己需要的视图

进行全局设置的调整

针对surface,node,edge文件都有其单独的设置,来使图片/模型能更具象化、精细化的表达,输出的image文件也能进行设置。

下面将对node,edge文件的创建和模型的具象化、精细化表达进行介绍。     

三、node文件的创建                                                                     

首先明确所需要构建模型的EEG电极类型,并通过下表来进行位置坐标的查询。

根据上表来进行node文件的创建

每个节点都有6列,前三列为节点坐标(即上方表查询可得),第四列代表节点颜色,第五列代表节点大小,第六列代表节点名称,下面以一个具体的文件举例。

首先创建一个(.txt)文本文件-->按照上方规则输入-->保存文件-->修改后缀为.node

获得电极位置置入BrainNet Viewer如下图所示。

 四、edge文件的创建

所谓edge文件便是两个节点间连线的参数。所以很容易想到两两之间的关系可以使用N阶矩阵表示(N为节点的数量)。只要在每一行每一列输入节点连线的数值就可获得edge文件(例如下图)。

当然对于单个脑部的EEG信号只会出现0、1二值,对于多个EEG信号可以进行平均化处理,则可能会出现小数值,依然可以在edge文件中出现。

一般EEG信号会通过.csv文件或者.xls文件存储,平均化处理非常的麻烦。所以我做了一个MATLAB程序,可以直接输出平均矩阵,可粘贴到.txt文件中,修改后缀后可获得.edge文件。

% 设置文件夹路径
folderPath = ' '; % 替换为你的文件夹路径

% 获取所有CSV文件
fileList = dir(fullfile(folderPath, '*.csv'));

% 初始化一个变量用于存储总和
totalSum = [];

% 记录文件数量
fileCount = length(fileList);

% 遍历每个文件
for i = 1:fileCount
    % 获取当前文件的完整路径
    filePath = fullfile(folderPath, fileList(i).name);
    
    % 读取CSV文件并转换为矩阵
    currentMatrix = csvread(filePath);
    
    % 累加当前矩阵
    if isempty(totalSum)
        totalSum = currentMatrix; % 如果是第一次,初始化总和
    else
        totalSum = totalSum + currentMatrix; % 否则进行累加
    end
end

% 计算均值
if fileCount > 0
    averageMatrix = totalSum / fileCount; % 除以文件数量
else
    averageMatrix = []; % 如果没有文件,则均值为空
end

% 输出均值矩阵
disp('所有CSV文件的矩阵均值为:');
disp(averageMatrix);

五、BrainNet Viewer的精细化制图

想让图变的更加精美,更能反映需要的特征,则需要在BrainNet Viewer中的Option上加以修改。

以下图为例,可以看出图片反映不出什么具体信息,也没有美感。下面通过一些设置将其精细化。

首先在node的label界面可以将结点打上标签

可获得带标签(包括字体和字号)的脑图(也可修改结点颜色,在这里不多赘述)

其次用的比较多的还有连线之间的颜色,可在edge里面的color工具,设置随数值大小渐变,也可以同色处理(不过就没法反映小数的大小区分),线的粗细也可以用数值大小来调整

最后File -> Save image就能实现出图

基本的精细化制图就是这样了

 总结

以上是我对BrainNet Viewer工具的一些浅薄的理解,本人才疏学浅,希望能与大家一起无限进步!

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值