人工智能导论(第五版)王万良课后习题(第四章)

4.3

4.5

4.8

4.9

### 关于《人工智能导论》(王万良第五版课后习题 对于希望获取《人工智能导论》(王万良第五版课后习题及其答案的需求,通常这类资源可以通过官方出版渠道或教育机构获得。由于版权保护的原因,在线分享完整的教材内容和标准答案可能受到限制。 然而,可以建议通过合法途径来访问这些资料: - **购买正版书籍**:这是最直接的方式,能确保读者获得最新版本的内容以及配套的学习材料。 - **联系出版社或作者团队**:部分出版社提供教师手册或其他辅助教学资源给授课老师,学生可通过学校图书馆或任课教授间接取得帮助。 - **加入学习社区**:许多在线平台上有活跃的人工智能学习小组,成员们会交流心得并共同解决遇到的问[^1]。 关于机器学习与人工智能之间关系的理解如下: 机器学习作为一门学科专注于开发能够让计算机系统自动改进经验的方法和技术。它构成了现代AI应用的核心组成部分之一,因为大多数当前成功的AI解决方案都依赖于某种形式的数据驱动模型训练过程。尽管如此,正如前面提到的那样,AI领域还涵盖了更广泛的研究方向,比如逻辑推理、规划决策等非基于统计模式识别的任务。 ```python # 示例代码展示了一个简单的监督学习流程 from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression def perform_machine_learning(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = LogisticRegression() model.fit(X_train, y_train) accuracy = model.score(X_test, y_test) return f'Model Accuracy: {accuracy:.2f}' ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值