Redis保证数据⼀致、缓存穿透、缓存雪崩和数据热点

13- Redis和Mysql如何保证数据⼀致?

  1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致

  2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中

这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题, ⽐如线程1删除了 Redis缓存数据,正在更新Mysql, 此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中

  1. 使用MQ异步同步, 保证数据的最终一致性

我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 :

  1. 对于一些一致性要求不高的场景 , 不做处理

    例如 : 用户行为数据 , 我们没有做一致性保证 , 因为就算不一致产生的影响也很小

  2. 对于时效性数据 , 设置过期时间

    例如 : 接口缓存数据 , 我们会设置缓存的过期时间为 60S , 那么可能会出现60S之内的数据不一致, 60S后缓存过期, 重新从数据库加载就一致了

  3. 对于一致性要求比较高但是时效性要求不那么高的场景 , 使用MQ不断发送消息完成数据同步直到成功为止

    例如 : 首页广告数据 , 首页推荐数据

    数据库数据发生修改----> 发送消息到MQ -----> 接收消息更新缓存

    消息不丢失/重复消费 : 消息状态表/消息消费表

  4. 对于一致性和时效性要求都比较高的场景 , 使用分布式事务 , Seata的TCC模式

    很少用

14- 什么是缓存穿透 ? 怎么解决 ?

缓存穿透是指查询一条数据库和缓存都没有的一条数据,就会一直查询数据库,对数据库的访问压力就会增大,缓存穿透的解决方案

有以下2种解决方案 :

  • 缓存空对象:代码维护较简单,但是效果不好。

  • 布隆过滤器:代码维护复杂,效果很好

15- 什么是缓存击穿 ? 怎么解决 ?

缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大

解决方案 :

  • 热点数据提前预热

  • 设置热点数据永远不过期。

  • 加锁 , 限流

16- 什么是缓存雪崩 ? 怎么解决 ?

缓存雪崩/缓存失效 指的是大量的缓存在同一时间失效,大量请求落到数据库 导致数据库瞬间压力飙升。

造成这种现象的 原因是,key的过期时间都设置成一样了。

解决方案是,key的过期时间引入随机因素

17- 数据库有1000万数据 ,Redis只能缓存20w数据, 如何保证Redis中的数据都是热点数据 ?

配置Redis的内容淘汰策略为LFU算法 , 这样会把使用频率较低的数据淘汰掉 , 留下的数据都是热点数据

<think>嗯,用户让我介绍一下基于Redis的高频访问信息缓存,以及如何解决缓存穿透雪崩击穿的问题,并且还要提出相关的面试问题。首先,我需要确保自己对这些概念有清晰的理解,然后才能组织出合适的面试问题。 首先,缓存穿透。我记得这是指查询一个不存在的数据,导致每次请求都直接打到数据库上。解决方法可能有布隆过滤器或者缓存空对象。但得确认这些方法的优缺点,比如布隆过滤器的误判率空间占用,缓存空对象的过期时间设置。 然后是缓存雪崩,这应该是大量缓存同时过期或者Redis宕机,导致数据库压力激增。解决方法可能包括随机过期时间、集群高可用,或者永不过期加后台更新。需要区分雪崩击穿的区别,雪崩是大面积失效,击穿是单个热点数据失效。 缓存击穿,指的是热点数据在过期瞬间,大量请求直接访问数据库。解决方法可能有互斥锁或者逻辑过期。互斥锁可能会影响性能,而逻辑过期需要后台更新,但数据可能不一致。 接下来,用户需要的是面试问题,所以需要从基础到进阶,覆盖原理、解决方案、实际应用场景。可能需要设计问题来考察候选人对这些概念的理解深度,以及解决实际问题的能力。 比如,基础问题可以问缓存穿透雪崩、击穿的区别,解决方案。进阶问题可能涉及布隆过滤器的实现原理,互斥锁的具体实现方式,比如Redis的setnx命令。还有实际场景题,让候选人设计一个防止雪崩的方案,或者如何处理热点数据突然过期的情况。 还要注意Redis数据结构,比如如何选择合适的数据结构来存储缓存,以及持久化策略对缓存的影响。可能还要涉及Redis集群的高可用方案,比如主从复制、哨兵、Cluster模式等。 需要确保问题覆盖全面,既有理论又有实践,同时考察候选人的问题解决能力经验。比如,是否知道预热缓存、降级策略、熔断机制等。 另外,可能还要考虑Redis的内存淘汰策略,比如LRU、LFU,不同策略在缓存场景中的应用。以及如何监控缓存的有效性,如何评估缓存命中率等运维相关的问题。 最后,要提醒候选人在回答时结合项目经验,举例说明他们是如何在实际项目中应用这些方案的,以展示实际操作能力。</think>以下是为"Redis缓存高频访问与三⼤缓存问题"主题整理的20个典型⾯试题及考察要点分层说明: --- ### 、基础原理层(5题) 1. **缓存穿透/雪崩/击穿三者的核⼼区别是什么?** - 穿透:**恶意访问不存在数据** - 雪崩:**⼤⾯积缓存同时失效** - 击穿:**单个热点缓存失效后并发冲击** 2. **描述布隆过滤器防穿透的⼯作原理** - 要点:**位数组+哈希函数、存在误判率、空间效率优势** 3. **缓存空对象⽅案如何处理数据更新问题?** - 需答出:**设置较短的过期时间、异步更新策略** 4. **缓存雪崩的随机过期时间⽅案如何实现?** - 公式示例:$$ T_{real} = T_{base} + random(0, T_{variance}) $$ 5. **互斥锁解决击穿问题时,为什么要⽤SETNX⽽不是普通的加锁?** - 关键点:**Redis原⼦性操作、防⽌分布式锁冲突** --- ### ⼆、进阶设计层(8题) 6. **如何设计个带熔断机制的缓存系统?** - 需包含:**请求量阈值监控、降级策略、恢复机制** 7. **逻辑过期⽅案中,如何实现后台异步更新?** - 典型流程:**获取过期标识→触发更新任务→返回旧数据** 8. **布隆过滤器如何应对数据库扩容?** - 难点说明:**需要重建过滤器、采⽤可扩展布隆过滤器** 9. **热点Key发现⽅案有哪些?** - 参考答案:**客户端统计、代理层监控、Redis监控命令** 10. **如何通过双缓存策略防击穿?** - 结构示例: ```text 主缓存:正常过期时间 备份缓存:更⻓过期时间 ``` 11. **Redis持久化策略对缓存恢复的影响?** - 需⽐较:**RDB快照恢复速度 vs AOF数据完整性** 12. **缓存预热的具体实施⽅案?** - 要点:**启动时加载热点数据、历史访问数据分析** 13. **如何通过限流保护数据库?** - 技术栈举例:**Redis-Cell模块、令牌桶算法实现** --- ### 三、综合实战层(7题) 14. **设计个电商秒杀系统的缓存架构** - 考察点:**热点库存缓存、本地缓存+Redis多级缓存、库存扣减⽅式** 15. **当缓存数据库致性发⽣冲突时如何取舍?** - 需分析:**CAP理论中的CP/AP选择、业务场景特性** 16. **如何优化⼤Value缓存导致的性能问题?** - 解决思路:**数据压缩、分片存储、使⽤更合适的数据结构** 17. **处理缓存数据的常⽤⼿段?** - 组合⽅案:**设置合理的过期时间+版本号机制+延迟双删** 18. **如何实现缓存资源的动态扩容?** - 集群⽅案:**Redis Cluster的槽位迁移原理** 19. **设计个实时监控缓存健康度的系统** - 关键指标:**命中率、响应时间、内存使⽤率、淘汰率** 20. **当发现缓存命中率持续下降时,你的排查思路?** - 排查路径:**热点Key分析→过期策略检查→业务查询模式变化→内存碎⽚情况** --- ### 四、深度扩展题(附加) - **Redis6.0新特性对缓存优化的影响?** - 重点:**多线程IO、客户端缓存(Client-side caching)** - **如何应⽤机器学习预测缓存失效?** - 创新点:**基于历史访问模式的智能过期时间调整** --- 以上问题设计覆盖**原理理解→⽅案设计→系统架构→故障排查**的知识链条,建议候选⼈在准备时: 1. 结合具体项⽬经验说明 2. 对每个解决⽅案要能说明优缺点 3. 重点掌握布隆过滤器、分布式锁、熔断降级等核⼼技术点的实现细节
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值