- 博客(570)
- 资源 (8)
- 收藏
- 关注
原创 Spring boot 4 & JAVA 25 虚拟线程重塑高并发编程
在高并发场景下,传统的线程池调优往往陷入“阻塞即死”的困境。Java 25 与 Spring Boot 4.x 的组合,通过虚拟线程(Virtual Threads)和 ScopedValue,彻底重构了这一局面。本文跳过基础理论,直击生产实战,带你掌握如何用同步代码实现异步性能,并解决上下文传递的痛点。
2026-01-21 23:30:00
53
原创 解锁新技能:Java 开发者如何丝滑过渡到 TypeScript -- 2
TypeScript 正在经历一场由 AI 驱动的“爆发式”增长,甚至在活跃度上已经超越了 Python,成为 GitHub 上最活跃的编程语言。 作为JAVA 开发者,有必要了解并熟悉一下typescriptTypeScript 的设计者有意借鉴了 Java、C# 等语言的一些语法元素,降低了学习曲线,但底层机制与JAVA、C#有着本质的不同在 AI Agent 的“应用层”和“工具层”开发中,TypeScript (TS) 确实已经展现出了超越 Python 的独特优势,成为了许多新项目的首选
2026-01-20 23:00:00
1336
原创 解锁新技能:Java 开发者如何丝滑过渡到 TypeScript -- 1
TypeScript 正在经历一场由 AI 驱动的“爆发式”增长,甚至在活跃度上已经超越了 Python,成为 GitHub 上最活跃的编程语言。 作为JAVA 开发者,有必要了解并熟悉一下typescriptTypeScript 的设计者有意借鉴了 Java、C# 等语言的一些语法元素,降低了学习曲线,但底层机制与JAVA、C#有着本质的不同在 AI Agent 的“应用层”和“工具层”开发中,TypeScript (TS) 确实已经展现出了超越 Python 的独特优势,成为了许多新项目的首选
2026-01-19 22:45:00
1631
原创 Spring-AI Agent Skills 赋予AI智能体“即插即用”的专业超能力
Agent Skills 正在重新定义我们与 AI 的协作方式。它不再要求我们成为高明的 **“提示词巫师”**,而是鼓励我们成为**技能架构师**。通过将专业知识封装成标准化的 Skills,构建一个更加`模块化`、`高效且可靠`的 `AI 应用生态`。未来,一个强大的 AI 智能体,不再仅仅取决于它底层模型的大小,更取决于它装备了怎样一套强大的 **“技能工具箱”**。让我们一起学习并积累Agent Skill吧
2026-01-15 23:00:00
1075
1
原创 Spring-AI 脱离 IDE 的束缚:OpenCode 让 AI 开发回归终端本源
OpenCode是一个**专为现代开发者设计的、以终端为核心的 AI 编程协作者**。**总而言之,如果你是一位:** ● **重度终端用户**,厌恶在 IDE 和浏览器之间频繁切换; ● **对代码隐私有严格要求**,希望数据保留在本地; ● **追求极致性价比**,希望自由选择模型提供商; ● **渴望自动化**,希望 AI 能不仅仅是聊天,而是能通过脚本和工具帮你完成实际工作。那么,OpenCode 无疑是你工具箱中值得立刻尝试的“瑞士军刀”。
2026-01-13 22:45:00
1943
原创 Spring AI 从“工具助手”到“数字员工”的自动化演进
尽管大语言模型(LLM)在文本生成、逻辑推理等方面展现出强大能力,但其本质仍是非确定性系统。而企业的生产环境则高度依赖确定性、安全性与可追溯性。因此,真正的挑战不在于 “能不能做” ,而在于 “如何可靠地交付”。从企业AI落地的痛点与挑战,如何进行AI落地,如何让AI靠谱及AI落地建议方面,本文进行总结梳理。
2026-01-12 22:15:00
1106
原创 Spring AI 大模型工程核心:效率的极限博弈
大模型工程实践的本质,是对算力、显存与通信效率的极限压榨。其核心不仅在于算法模型本身,更在于底层系统工程的综合优化。通过注意力机制(如FlashAttention)降低计算复杂度;利用并行策略(3D并行)与PD/EPD分离,实现千卡级集群的高效协同;借助量化与缓存管理(PagedAttention),最大化硬件利用率。工程目标始终围绕 “降本” (降低算力与内存成本)与 “提效” (提升吞吐量、降低延迟),在有限资源下实现模型能力的极致释放。
2026-01-07 23:15:00
874
原创 Spring-AI 大模型未来:从“学会世界”到“进入世界”的范式跃迁
清华大学教授、智谱AI首席科学家唐杰在2025年末发表深度思考,指出当前大模型发展正面临从 **“认知智能”** 向 **“生产系统”** 的关键转折。他提出 **“领域大模型是伪命题”**、**“AI应用的第一性原理是替代工种”**,并预言**在线学习与自我评估将成为下一个Scaling范式**。本文结合其观点与公开技术趋势,深入分析预训练瓶颈、新范式演进路径及AI落地的核心逻辑。
2026-01-07 21:45:00
884
原创 Spring boot 4 : AI 时代工程师真正不可替代的能力是什么
**工程师** 需要 **以人为本,方能穿越技术周期**,在代码之外更懂得驾驭:**人际关系、政治博弈、目标对齐与组织灰度**这 21 条法则看似分散,实则围绕三个核心主题展开:- **保持好奇**:对用户、技术、世界的持续探索;- **保持谦逊**:承认局限,拥抱不确定性;- **以人为本**:无论是服务用户,还是协同队友,工作的终极对象始终是人。在 AI 日益强大的今天,机器可以写代码、画原型、生成文档,但它还无法真正理解人类的情感、动机与困境。而这,正是工程师不可替代的价值所在。
2026-01-06 23:00:00
1092
原创 Spring boot 4 探究netty的关键知识点
Netty 是一款基于 NIO 的高性能异步事件驱动网络框架。本篇博客梳理了其核心组件:**Zero Copy**、**EventLoop**与**HeartBeat**等关键知识点。掌握这些关键知识点,能助你构建高并发、低延迟的网络应用,轻松应对粘包拆包与心跳检测等常见问题。
2026-01-06 22:30:00
589
原创 Spring boot 4 探究基于CGLIB的动态代理
CGLIB 是 Spring 实现 AOP 的核心底层技术之一,它基于 ASM 字节码框架,在运行时生成目标类的子类来实现代理。相比于 JDK 动态代理(基于接口),CGLIB 可以代理普通的 Java 类,灵活性更高。本文探究Springboot 基于CGLIB的动态代理实现机制及注意事项
2026-01-05 21:00:00
922
原创 Spring boot 4 搞懂MyBatis-Plus的用法
[MyBatis-Plus](https://github.com/baomidou/mybatis-plus) 是一个 [MyBatis](https://www.mybatis.org/mybatis-3/) 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生本文针对Spring boot 4如何集成MyBatis-Plus进行梳理汇总
2025-12-30 23:00:00
964
原创 Spring boot 4 搞懂 Spring Boot 核心启动流程
本文根据Spring boot 3/4的源代码,针对Spring Boot 核心启动流程进行了总结梳理。Spring Boot 3/4 的启动核心在于自动化配置与事件驱动。它通过` SpringApplication.run() `入口,利用 `spring.factories`、`AutoConfiguration`、`SPI`、`AOT`等加载扩展点。流程历经环境准备、容器刷新(含自动配置与条件化装配)、内嵌Web服务器启动,最后通过 `Runner `回调完成就绪,全程由事件发布-监听机制串联。
2025-12-30 20:30:00
1023
原创 Spring Boot 4 如何使用Sentinel进行限流-II【基于Sentinel Spring MVC Adapter实现】
Sentinel 通过 **拦截器 + 资源埋点 + 规则配置** 三步完成对 Servlet 6.x 的限流适配。核心优势在于:- **无侵入性**:通过配置自动拦截请求,无需修改业务代码。- **灵活性**:支持自定义资源名、调用方解析和阻断响应。【自定义资源名通过UrlCleaner实现】- **异步兼容**:适配 Servlet 6.x 的异步处理模型,保障高并发稳定性。与 Spring MVC 的 `HandlerInterceptor` 集成,`SentinelWebIntercept
2025-12-27 23:03:41
816
原创 Spring Boot 4 如何使用Sentinel进行限流?
随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。Sentinel 社区正在将流量治理相关标准抽出到 [OpenSergo spec](https://opensergo.io/zh-cn/) 中,Sentinel 作为流量治理标准实现
2025-12-26 23:22:30
1039
原创 Spring AI 深度重构 renren-security,基于 Java 21 虚拟线程打造极致高并发脚手架
renren-security 一直是我心中最优秀的轻量级 Java 快速开发平台之一。它基于 Spring Boot、Shiro 和 Vue3 构建,凭借“极低门槛、拿来即用”的特性,成为了无数开发者交付项目的利器。然而,随着 Spring Boot 4.0 的正式发布以及 Java 21 成为新的事实标准,原有技术栈在高并发、低延迟的现代应用需求下面临显著瓶颈。为了将这套经典的权限系统带入现代 Java 时代,基于 renren-security 5.5.0 版本,独自完成这次深度的技术重构
2025-12-24 19:30:00
882
原创 Spring-AI RAG 如何提高召回率?
在构建 RAG(检索增强生成)系统时,“召回率”(Recall)决定了系统能否从海量知识库中把“相关的资料”全都找出来。如果召回率低,哪怕你的大模型再厉害,也是“巧妇难为无米之炊”。本文针对RAG中如何提高召回率的理论 及落地实践进行详细讲解
2025-12-23 22:30:00
1864
原创 Spring-AI: AI大模型 就业岗位全景图,挑选适合自己的
大模型行业已经从早期的“百模大战”逐渐走向分层细化,不同岗位的技术壁垒、薪资天花板和职业前景差异巨大。为了让你更直观地了解这个生态,整理了一份 “难度从极高到低”的岗位全景图,并对核心岗位进行了详细拆解。
2025-12-23 19:30:00
933
原创 Spring Boot 4 & JAVA 21 学习--迁移指南 Migration Guide
作为 Spring Boot 3.x 之后的首个大版本更新,Spring Boot 4.0 基于 Spring Framework 7.0、Jakarta EE 11 和 Java 17+(推荐 Java 21 或 25),带来了模块化架构重构、虚拟线程原生支持、HTTP 服务客户端自动配置等重大变化。本文带你学习如何将项目迁移至Spring Boot 4
2025-12-21 21:20:08
638
2
原创 Spring-AI WebClient 和 RestClient 用法解读
在 Spring 生态(特别是 Spring 6+)中,WebClient 和 RestClient 都是用来发起 HTTP 请求的客户端工具,它们正在逐步取代老旧的 RestTemplate。简单来说,WebClient 是为了高性能和未来的响应式架构而生,而 RestClient 是为了让传统的同步代码写起来更优雅、更简洁。
2025-12-12 18:02:03
121
原创 JAVA JDK/JVM如何选择? 你还在用Oracle JDK嘛?
在 2025 年的今天,对于大多数开发者和企业来说,选择 Liberica、Adoptium (Temurin) 或基于 OpenJDK 的发行版,而不选 Oracle JDK,主要集中在“钱”、“省心”和“特定优化”这三个核心维度。简单来说,Oracle JDK 现在更像是一个卖给大企业的“商业服务产品”,而 OpenJDK 生态则是“免费且强大的社区标准”。目前有免费、开源、功能一样强且经过大厂验证的“精装版 OpenJDK”,为什么要选择Oracle jdk?
2025-12-12 15:54:43
153
原创 Spring-AI Tool Calling 过程中字符串与对象间的转换
在 Spring AI 的 Tool Calling 过程中,字符串与对象之间的转换主要发生在数据进入 Java 方法之前(反序列化/入参转换)和数据返回给 LLM 之前(序列化/结果转换)两个阶段另外就是给LLM提供所能使用工具转换为 LLM 能识别的 `ToolDefinition` 对象
2025-12-08 17:58:53
783
原创 Spring-AI ETL Pipeline讲解
Spring AI 的 ETL(Extract, Transform, Load)框架是构建 RAG(检索增强生成)应用的核心组件,帮助你将原始数据(如 PDF、TXT、HTML 等)处理成 AI 模型可以理解的向量格式.提取、转换和加载(ETL)框架在检索增强生成(RAG)中充当数据处理的骨干.ETL管道编排从原始数据源到结构化向量存储的流,确保数据以最佳格式供AI模型检索。
2025-12-08 11:00:45
902
原创 Spring-AI 利用KeywordMetadataEnricher & SummaryMetadataEnricher 构建文本智能元数据
在构建基于Spring AI的RAG(检索增强生成)应用时,数据的质量直接决定了回答的智商。RAG时,不仅需要原始文本,还需要文本的上下文摘要或核心关键词来辅助检索和生成。Spring AI提供的ETL Pipeline模块中,KeywordMetadataEnricher和SummaryMetadataEnricher正是为此而生。它们利用大模型的能力,生成文件的核心关键词及摘要信息。
2025-12-07 15:37:45
416
原创 Spring-AI 利用Recursive Advisors如何构建可观察的循环处理链?
在构建AI应用时,常常需要让模型反复执行某些操作,比如以下操作:循环调用工具直到没有更多工具需要调用验证结构化输出并在验证失败时重试传统的做法是将这些逻辑写在模型内部,但这会让调试和监控变得困难。Spring AI的Recursive Advisor(递归Advisors)正是为了解决这个问题而设计的——它将这些循环逻辑移到了可观察、可拦截的Advisor链中,让AI应用的开发和调试更加透明和可控。
2025-12-07 09:54:46
734
原创 Spring-AI Advisors 体系框架与实战
在构建AI应用时,常常需要在模型调用前后执行一些`通用逻辑`,例如:记录日志、管理对话上下文、进行安全审查、或者注入额外的知识库信息。如果把这些逻辑都写在业务代码里,不仅会造成代码混乱,也难以复用和维护。Spring AI 框架提供了一个`优雅的解决方案——Advisors`。它借鉴了 Spring 经典的 `AOP(面向切面编程)思想`,让你可以像“插件”一样,将这些`横切关注点(Cross-Cutting Concerns)`从核心业务逻辑中剥离出来,实现高度`可扩展`和`可定制`的AI应用。
2025-12-06 23:11:38
563
原创 Spring-AI 如何玩转ChatClient?
在构建AI应用时,单一模型往往难以满足多样化的业务需求。Spring AI的ChatClient提供了优雅的解决方案,支持在同一应用中灵活使用多个ChatModel。ChatClient提供了一个fluent API 来与AI模型进行通信。它支持同步和流式编程模型。 将深入探讨如何在Spring Boot应用中配置和使用多个ChatModel,实现模型的动态选择与组合,如何深入使用ChatClient进行AI应用开发。
2025-12-06 13:15:37
753
原创 Spring-AI Moderation Model为何物?
Moderation Model 是一个专门用于**内容审核(Content Moderation)**的 AI 工具。它能自动分析你提供的文本,并判断其中是否包含违反其使用政策的敏感或有害内容。在当今这个用户生成内容(UGC)爆炸式增长的时代,从社交媒体评论到AI生成的回答,确保平台内容的合规与安全已成为开发者不可回避的责任。使用Moderation Model 可以方便的审核模型的输入和输出,识别有有害或敏感的内容。
2025-12-05 21:29:27
394
原创 Spring-AI Prompts详细解读
Prompt指导AI模型生成特定输出的输入。这些Prompt的设计和措辞显著影响模型的响应.投入时间和精力设计深思熟虑的Prompt可以极大地改善AI的结果.特别是随着人工智能技术的快速发展,如何最有效地利用Prompt是一个持续的挑战
2025-12-05 18:09:14
1005
原创 Spring-AI如何支持多模态输入
目前多模态LLM已经出现,如OpenAI’s GPT-4o , Google’s Vertex AI Gemini 1.5, Anthropic’s Claude3 和开源的Llama3.2。这些模型能接受多种输入,包括文本、图像、音频和视频,并通过整合这些输入生成文本响应**多模态**是指模型能够**同时理解和处理**来自各种来源的信息,包括文本、图像、音频和其他数据格式本文讲解Spring-AI如何支持多模态输入
2025-11-30 17:54:46
337
原创 Spring-AI 如何使用Structured Output Converter将LLM输出转换为结构化数据
为什么需要结构化输出?Spring AI结构化输出转换器帮助将LLM输出转换为结构化格式。- 下游应用程序需要llm生成结构化输出,以便于进行解析- 将llm生成结果快速转换为数据类型,如JSON、XML或Java类,这些数据类型可以传递给其他应用程序函数和方法
2025-11-29 23:24:37
1073
1
原创 postgresql数据库pg_trgm & pgvector 使用教程
pg_trgm 是 PostgreSQL 的一个扩展模块,提供了基于 trigram(3-gram)相似度的**文本搜索**功能。它可以通过计算字符串之间的相似度来进行快速、模糊匹配的查询。这种功能在需要进行模糊搜索、字符串相似性比较等场景中非常有用。pgvector 是一个开源的 PostgreSQL 扩展,为PostgreSQL添加了对向量相似性搜索的支持,使得在 PostgreSQL中存储和查询向量数据变得可能
2025-09-17 16:18:08
239
原创 Spark NLP: 最先进的自然语言处理和LLM库
Spark NLP 是由 JohnSnowLabs 开发的一款基于 Apache Spark 的自然语言处理库。它支持分布式计算,能够高效处理大规模文本数据,适用于各种 NLP 任务。Spark NLP 提供了丰富的预训练模型,涵盖分词、词性标注、命名实体识别(NER)、文本分类、情感分析等任务,尤其在医疗和金融领域有广泛应用。
2025-09-17 12:14:28
691
原创 ClickHouse 25.3 json列类型使用示例
JSON已经成为现代数据系统中处理半结构化和非结构化数据的通用语言。无论是在日志记录和可观察性场景、实时数据流、移动应用存储还是机器学习管道中,JSON的灵活结构使其成为跨分布式系统捕获和传输数据的首选格式。从clickhouse 25.3版本,在生产中已经可以使用JSON列类型
2025-06-08 10:29:24
1442
原创 如何构建一个提供LLM运行环境的镜像
如果想在本地搭建LLM的运行环境,使用镜像是一个很好的选择本文提供基于python 3.10版本,使用poetry管理依赖,快速搭建LLM运行环境的镜像的脚本。
2025-04-10 09:40:40
160
原创 Trio:快速掌握Python并发编程的神器
Trio 是一个友好的 Python 库,用于异步并发和 I/O。它提供了一种简单且强大的方式来编写并发程序。本文将介绍如何使用 Trio 快速开发并发应用,包括与 Python 原生 async/await/coroutine 的区别、Trio 的优劣势、如何开发多任务并发的后端、如何开发多任务并发的 WEB 后端以及使用 Trio 的注意事项等。
2025-03-29 19:42:20
1204
原创 使用 Docker Compose 的 COMPOSE_PROFILES 变量:模块化你的应用部署
利用 Docker Compose 的 COMPOSE_PROFILES 环境变量及其 profiles 功能,开发者可以更加灵活和高效地管理复杂的应用部署。无论是为了简化开发流程还是优化生产环境的部署策略,这个特性都提供了一种优雅的解决方案。
2025-03-25 10:23:12
1610
HBase在搜索网页库上的应用_360.pdf
2013-07-28
CSOP 2023北京站-PPT
2023-06-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅