题目
给定一个 n×n 的整数矩阵。对任一给定的正整数 k<n,我们将矩阵的偶数列的元素整体向下依次平移 1、……、k、1、……、k、…… 个位置,平移空出的位置用整数 x 补。你需要计算出结果矩阵的每一行元素的和。
输入格式:
输入第一行给出 3 个正整数:n(<100)、k(<n)、x(<100),分别如题面所述。
接下来 n 行,每行给出 n 个不超过 100 的正整数,为矩阵元素的值。数字间以空格分隔。
输出格式:
在一行中输出平移后第 1 到 n 行元素的和。数字间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
7 2 99
11 87 23 67 20 75 89
37 94 27 91 63 50 11
44 38 50 26 40 26 24
73 85 63 28 62 18 68
15 83 27 97 88 25 43
23 78 98 20 30 81 99
77 36 48 59 25 34 22
输出样例:
440 399 369 421 302 386 428
样例解读
需要平移的是第 2、4、6 列。给定 k=2,应该将这三列顺次整体向下平移 1、2、1 位(如果有更多列,就应该按照 1、2、1、2 …… 这个规律顺次向下平移),顶端的空位用 99 来填充。平移后的矩阵变成:
11 99 23 99 20 99 89
37 87 27 99 63 75 11
44 94 50 67 40 50 24
73 38 63 91 62 26 68
15 85 27 26 88 18 43
23 83 98 28 30 25 99
77 78 48 97 25 81 22
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
栈限制
8192 KB
代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
// 读取矩阵大小 n、平移步长 k 和填充元素 num
int n, k, num;
cin >> n >> k >> num;
// 用于记录当前偶数列的平移步数,初始为 1
int p = 1;
// 定义两个 n+1 行 n+1 列的二维数组
// s 数组用于存储原始矩阵元素
// s_aim 数组用于存储平移后的矩阵元素
int s[n + 1][n + 1];
int s_aim[n + 1][n + 1];
// 读取矩阵元素并初始化 s_aim 数组
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> s[i][j];
s_aim[i][j] = s[i][j];
}
}
// 遍历矩阵的每一列
for (int i = 1; i <= n; i++) {
// 如果平移步长为 0,无需平移,跳出循环
if (k == 0) break;
// 如果是偶数列,进行平移操作
if (i % 2 == 0) {
// 将当前偶数列元素向下平移 p 个位置
for (int j = n; j >= 1; j--) {
s_aim[j][i] = s[j - p][i];
}
// 用 num 填充平移后空出的位置
for (int j = 1; j <= p; j++) {
s_aim[j][i] = num;
}
// 更新平移步数 p,按 1 到 k 循环
p = (p % k) + 1;
}
}
// 计算并输出平移后矩阵每行元素的和
for (int i = 1; i <= n; i++) {
int sum = 0;
for (int j = 1; j <= n; j++) {
sum += s_aim[i][j];
}
cout << sum;
// 每行和之间用空格分隔,但最后一行末尾无空格
if (i != n) cout << " ";
}
return 0;
}