思路:模拟,能够翻转成功就三种情况:(1)矩阵只有两行全是1 (2)矩阵只有两列全是1 (3)矩阵的1呈现”十“字状,且交点为0
Code:
#include<iostream>
#include<map>
using namespace std;
int n,m;
int32_t main()
{
int t;cin>>t;
while(t--)
{
cin>>n>>m;
map<int,int> x,y;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
{
char c;cin>>c;
x[i]+= c=='1';
y[j]+= c=='1';
}
map<int,int> mpx,mpy;
for(int i=0;i<n;i++)
mpx[x[i]]++;
for(int i=0;i<m;i++)
mpy[y[i]]++;
if((mpx[2]==n&&mpy[n]==2&&mpy[0]==m-2)||(mpx[0]==n&&mpy[0]==m)||(mpx[0]==n-2&&mpx[m]==2&&mpy[2]==m)
||(mpx[1]==n-1&&mpx[m-1]==1&&mpy[1]==m-1&&mpy[n-1]==1)) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
}
思路:
根据唯一分解定理:
可知一个数的因子个数为
本题要我们求n!的因子个数,n!=(n-1)!*n,n!可以分解成形如:,括号内的代表(n-1)!的分解,外面的是n的因数分解,那么n!的因数分解就是将原来(n-1)!中已经出现过的底数进行指数相加,然后再增加新的底数,化简为:
,n!的因数个数,然后我们就可以预处理出1~1e6的每个数的阶乘的因子个数和奇因子个数,求法是利用递推 对当前的数n质因数分解 对于它的每个因数pi 在n-1的结果上除掉之前的贡献 再乘上新的贡献。
注意:此题如果define int long long会超时,不能所有变量都是用long long,因为long long相比于int需要的空间和时间都要更多
1. 内存占用与缓存效率
-
long long
是64位类型,int
通常是32位。当处理大量数据(如数组)时,long long
会占用双倍内存,可能导致缓存命中率降低。 -
示例:若一个
int
数组占用 4MB(适合CPU缓存),换成long long
会占用 8MB,可能超出缓存容量,导致频繁的缓存失效,增加内存访问时间。
2. 运算指令的代价
-
在某些CPU架构(尤其是32位系统)中,64位整数的运算(如乘法、除法)可能需要更多指令周期。
-
示例:
a = b * c
在int
下是单条指令,但在long long
下可能需要多条指令或更复杂的处理。
Code:
#include<iostream>
#include<unordered_map>
#include<map>
#include<cmath>
#include<vector>
#include<algorithm>
#define ll long long
using namespace std;
const ll mod=998244353;
const int N=1e6+5;
ll fz[N],fm[N];ll inv[N];
ll qmi(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1) res=res*a%mod;
b>>=1;
a=a*a%mod;
}
return res;
}
int32_t main()
{
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
unordered_map<int,int> mp;
inv[1]= fm[1]=fz[1]=1;
for(int i=2;i<=1000000;i++){
inv[i]=qmi(i,mod-2)%mod;
// cout<<inv[i]<<endl;
}
for(int i=2;i<=1000000;i++)
{
vector<pair<int,int>> h;
int m=i;
for(int j=2;j*j<=m;j++)
{
int cnt=0;
if(m%j==0){
while(m%j==0)
m/=j,cnt++;
h.push_back({j,cnt});
}
}
if(m>1) h.push_back({m,1});
fm[i]=fm[i-1];
fz[i]=fz[i-1];
for(auto &[u,cnt]:h)
{
if(!mp[u]) mp[u]=1;
ll t=inv[mp[u]]*(cnt+mp[u])%mod;
fm[i]=fm[i]*t%mod;
if(u!=2) fz[i]=fz[i]*t%mod;
mp[u]+=cnt;
// cout<<"u:"<<u<<' '<<cnt<<endl;
}
}
int t1;cin>>t1;
while(t1--)
{
int n;cin>>n;
cout<<fz[n]*qmi(fm[n],mod-2)%mod<<' ';
}
}