牛客周赛 Round 91 EF


E-小苯的矩阵反转_牛客周赛 Round 91

 

思路:模拟,能够翻转成功就三种情况:(1)矩阵只有两行全是1 (2)矩阵只有两列全是1 (3)矩阵的1呈现”十“字状,且交点为0

Code:

#include<iostream>
#include<map>

using namespace std;

int n,m;
int32_t main()
{
  int t;cin>>t;
    while(t--)
    {
        cin>>n>>m;
        map<int,int> x,y;
        for(int i=0;i<n;i++)
            for(int j=0;j<m;j++)
            {
                char c;cin>>c;
                x[i]+= c=='1';
                y[j]+= c=='1';
            }
        map<int,int> mpx,mpy;
        for(int i=0;i<n;i++)
            mpx[x[i]]++;
        for(int i=0;i<m;i++)
            mpy[y[i]]++;
        
        if((mpx[2]==n&&mpy[n]==2&&mpy[0]==m-2)||(mpx[0]==n&&mpy[0]==m)||(mpx[0]==n-2&&mpx[m]==2&&mpy[2]==m)
           ||(mpx[1]==n-1&&mpx[m-1]==1&&mpy[1]==m-1&&mpy[n-1]==1)) cout<<"YES"<<endl;
           else cout<<"NO"<<endl;
    }
}

F-小苯的因子查询_牛客周赛 Round 91

思路:

根据唯一分解定理:

                                             n=p_{1}^{_{k1}}\times p_{2}^{_{k2}}\times p_{3}^{_{k3}}\cdots \times p_{n}^{_{kn}}

可知一个数的因子个数为     (k_{1}+1)\ast (k_{2}+1)\ast (k_{3}+1)\cdots \ast (k_{n}+1)

本题要我们求n!的因子个数,n!=(n-1)!*n,n!可以分解成形如:(p_{1}^{_{k1}}\times p_{2}^{_{k2}}\times p_{3}^{_{k3}}\cdots \times p_{n}^{_{kn}})\times p_{1}^{_{2}}\times p_{2}^{_{1}}\times p_{n+1}^{_{2}},括号内的代表(n-1)!的分解,外面的是n的因数分解,那么n!的因数分解就是将原来(n-1)!中已经出现过的底数进行指数相加,然后再增加新的底数,化简为:p_{1}^{_{k1+2}}\times p_{2}^{_{k2+1}}\times p_{3}^{_{k3}}\cdots \times p_{n}^{_{kn}}\times p_{n+1}^{_{2}},n!的因数个数,然后我们就可以预处理出1~1e6的每个数的阶乘的因子个数和奇因子个数,求法是利用递推 对当前的数n质因数分解 对于它的每个因数pi 在n-1的结果上除掉之前的贡献 再乘上新的贡献。

注意:此题如果define int long long会超时,不能所有变量都是用long long,因为long long相比于int需要的空间和时间都要更多

1. 内存占用与缓存效率

  • long long 是64位类型,int 通常是32位。当处理大量数据(如数组)时,long long 会占用双倍内存,可能导致缓存命中率降低。

  • 示例:若一个 int 数组占用 4MB(适合CPU缓存),换成 long long 会占用 8MB,可能超出缓存容量,导致频繁的缓存失效,增加内存访问时间。


2. 运算指令的代价

  • 在某些CPU架构(尤其是32位系统)中,64位整数的运算(如乘法、除法)可能需要更多指令周期。

  • 示例a = b * c 在 int 下是单条指令,但在 long long 下可能需要多条指令或更复杂的处理。

Code:

#include<iostream>
#include<unordered_map>
#include<map>
#include<cmath>
#include<vector>
#include<algorithm>
#define ll long long

using namespace std;

const ll mod=998244353;
const int N=1e6+5;

ll fz[N],fm[N];ll inv[N];
ll qmi(ll a,ll b)
{
    ll res=1;
    while(b)
    {
        if(b&1) res=res*a%mod;
        b>>=1;
        a=a*a%mod;
    }
    return res;
}

int32_t main()
{
    ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    unordered_map<int,int> mp;
   inv[1]= fm[1]=fz[1]=1;
    for(int i=2;i<=1000000;i++){
        inv[i]=qmi(i,mod-2)%mod;
       // cout<<inv[i]<<endl;
    }

    for(int i=2;i<=1000000;i++)
    {
      vector<pair<int,int>> h;
        int m=i;
        for(int j=2;j*j<=m;j++)
        {
            int cnt=0;
            if(m%j==0){
            while(m%j==0)
                m/=j,cnt++;
               h.push_back({j,cnt});
            }
           
        }
       if(m>1) h.push_back({m,1});
        fm[i]=fm[i-1];
        fz[i]=fz[i-1];
        for(auto &[u,cnt]:h)
        {
           if(!mp[u]) mp[u]=1;
           ll t=inv[mp[u]]*(cnt+mp[u])%mod;
           fm[i]=fm[i]*t%mod;
            if(u!=2) fz[i]=fz[i]*t%mod;
            mp[u]+=cnt;
           // cout<<"u:"<<u<<' '<<cnt<<endl;
        }
    }
    int t1;cin>>t1;
    
    while(t1--)
    {
        int n;cin>>n;
        cout<<fz[n]*qmi(fm[n],mod-2)%mod<<' ';
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SuperRandi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值