首先,新手朋友没有学过类不要紧,只需要记得里面写你的代码就行了,里面的就当普通函数用
代码中写了网址和题目,方便查看,会持续更新
#include<iostream>
#include<string>
#include<vector>
#include <cstdlib>
#include<algorithm>
using namespace std;
class Solution1 {
public:
//小A 和 小B 在玩猜数字。小B 每次从 1, 2, 3 中随机选择一个,小A 每次也从 1, 2, 3 中选择一个猜。
// 他们一共进行三次这个游戏,请返回 小A 猜对了几次?
//输入的guess数组为 小A 每次的猜测,answer数组为 小B 每次的选择。guess和answer的长度都等于3。
//https://leetcode.cn/problems/guess-numbers/submissions/627175122/?envType=problem-list-v2&envId=array
int game(vector<int>& guess, vector<int>& answer)
{
int sum = 0;
for (int i = 0; i < 3; i++)
{
if (guess[i] == answer[i])
{
sum++;
}
}
return sum;
}
};
class Solution2 {
public:
int minCount(vector<int>& coins)
{
/* 桌上有 n 堆力扣币,每堆的数量保存在数组 coins 中。我们每次可以选择任意一堆,拿走其中的一枚或者两枚,求拿完所有力扣币的最少次数。
示例 1:
输入:[4, 2, 1]
输出:4
解释:第一堆力扣币最少需要拿 2 次,第二堆最少需要拿 1 次,第三堆最少需要拿 1 次,总共 4 次即可拿完。*/
//https://leetcode.cn/problems/na-ying-bi/description/?envType=problem-list-v2&envId=array
int sum = 0;
for (int i = 0; i < coins.size(); i++)
{
sum += coins[i] / 2 + coins[i] % 2;
}
return sum;
}
};
class Solution3 {
public:
int smallestEqual(vector<int>& nums)
{
/*给你一个下标从 0 开始的整数数组 nums ,返回 nums 中满足 i mod 10 == nums[i] 的最小下标 i ;如果不存在这样的下标,返回 - 1 。
x mod y 表示 x 除以 y 的 余数 。
示例 1:
输入:nums = [0, 1, 2]
输出:0
解释:
i = 0: 0 mod 10 = 0 == nums[0].
i = 1 : 1 mod 10 = 1 == nums[1].
i = 2 : 2 mod 10 = 2 == nums[2].
所有下标都满足 i mod 10 == nums[i] ,所以返回最小下标 0*/
for (int i = 0; i < nums.size(); i++)
{
if (i % 10 == nums[i])return i;//简单模拟
}
return -1;
}
};
class Solution4 {
public:
int findMaxConsecutiveOnes(vector<int>& nums)
{
/*给定一个二进制数组 nums , 计算其中最大连续 1 的个数。
示例 1:
输入:nums = [1, 1, 0, 1, 1, 1]
输出:3
解释:开头的两位和最后的三位都是连续 1 ,所以最大连续 1 的个数是 3.*/
//https://leetcode.cn/problems/max-consecutive-ones/description/?envType=problem-list-v2&envId=array
int flag=0;
int temp = 0;
for (int i = 0; i < nums.size(); i++)
{
if (nums[i] == 1)
{
flag++;
if (flag > temp)temp = flag;
}
else flag = 0;
}
return temp;
}
};
class Solution5 {
public:
int countKDifference(vector<int>& nums, int k)
{
/* 给你一个整数数组 nums 和一个整数 k ,请你返回数对(i, j) 的数目,满足 i < j 且 | nums[i] - nums[j]| == k 。
| x | 的值定义为:
如果 x >= 0 ,那么值为 x 。
如果 x < 0 ,那么值为 - x 。
示例 1:
输入:nums = [1, 2, 2, 1], k = 1
输出:4
解释:差的绝对值为 1 的数对为:
- [1, 2, 2, 1]
- [1, 2, 2, 1]
- [1, 2, 2, 1]
- [1, 2, 2, 1]*/
//https://leetcode.cn/problems/count-number-of-pairs-with-absolute-difference-k/description/?envType=problem-list-v2&envId=array
int sum = 0;
for (int i = 0; i < nums.size(); i++)
{
for (int j = i + 1; j < nums.size(); j++)
{
if (abs(nums[i] - nums[j]) == k) sum++;//abs是绝对值函数
}
}
return sum;
}
};
class Solution6 {
public:
int maxProduct(vector<int>& nums)
{
/*给你一个整数数组 nums,请你选择数组的两个不同下标 i 和 j,使(nums[i] - 1)* (nums[j] - 1) 取得最大值。
请你计算并返回该式的最大值。
示例 1:
输入:nums = [3, 4, 5, 2]
输出:12
解释:如果选择下标 i = 1 和 j = 2(下标从 0 开始),则可以获得最大值,
(nums[1] - 1) * (nums[2] - 1) = (4 - 1) * (5 - 1) = 3 * 4 = 12 。*/
//https://leetcode.cn/problems/maximum-product-of-two-elements-in-an-array/description/?envType=problem-list-v2&envId=array
/*int maxNum = 0;//最终目标
int temp = 0;
for (int i = 0; i < nums.size(); i++)
{
for (int j = i + 1; j < nums.size(); j++)
{
temp = (nums[i] - 1) * (nums[j] - 1);
if (temp > maxNum)maxNum = temp;
}
}
return maxNum;*/
//上述的方法很低效,需要全部便利
sort(nums.begin(), nums.end());
return (nums.back() - 1) * (nums[nums.size() - 2] - 1);
}
};
class Solution7 {
public:
int differenceOfSum(vector<int>& nums)
{
/*给你一个正整数数组 nums 。
元素和 是 nums 中的所有元素相加求和。
数字和 是 nums 中每一个元素的每一数位(重复数位需多次求和)相加求和。
返回 元素和 与 数字和 的绝对差。
注意:两个整数 x 和 y 的绝对差定义为 | x - y | 。
示例 1:
输入:nums = [1, 15, 6, 3]
输出:9
解释:
nums 的元素和是 1 + 15 + 6 + 3 = 25 。
nums 的数字和是 1 + 1 + 5 + 6 + 3 = 16 。
元素和与数字和的绝对差是 | 25 - 16 | = 9 。
1 <= nums.length <= 2000
1 <= nums[i] <= 2000
*/
//https://leetcode.cn/problems/difference-between-element-sum-and-digit-sum-of-an-array/description/?envType=problem-list-v2&envId=array
//本体并不难,只是看起来比前面的复杂了,实际每一步都很简单,重点在于如何求每一个数的位数
int sumEle = 0;//元素和
int sumDigit = 0;//位数和
for (int i = 0; i < nums.size(); i++)
{
sumEle += nums[i];
int temp = nums[i];//使用临时变量,不修改数组本身的值
while (temp > 0)
{
sumDigit += temp% 10;
temp/= 10;
}
}
return abs(sumEle - sumDigit);
}
};
class Solution8 {
public:
int maximizeSum(vector<int>& nums, int k)
{
//2656 k个元素的最大和
/* 给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。你需要执行以下操作 恰好 k 次,最大化你的得分:
从 nums 中选择一个元素 m 。
将选中的元素 m 从数组中删除。
将新元素 m + 1 添加到数组中。
你的得分增加 m 。
请你返回执行以上操作恰好 k 次后的最大得分。
示例 1:
输入:nums = [1, 2, 3, 4, 5], k = 3
输出:18
解释:我们需要从 nums 中恰好选择 3 个元素并最大化得分。
第一次选择 5 。和为 5 ,nums = [1, 2, 3, 4, 6] 。
第二次选择 6 。和为 6 ,nums = [1, 2, 3, 4, 7] 。
第三次选择 7 。和为 5 + 6 + 7 = 18 ,nums = [1, 2, 3, 4, 8] 。
所以我们返回 18 。
18 是可以得到的最大答案。*/
//毫无疑问,需要我们进行挑最大的来进行 max_element
//继续思考,我们把最大的拿出来,又放进去一个更大的,那么永远就是这个位置的最大的,并且每次都是+1
auto max = max_element(nums.begin(), nums.end());//此时获取的是迭代器,需要解引用
//因为每次都是基础+1
int temp = 1;
int sum = *max*k;//*max是解引用
for (int i = 1; i < k; i++)//因为第一次都是直接拿,所以少循环一次
{
sum += temp;
temp++;
}
return sum;
}
};
class Solution9 {
public:
int arithmeticTriplets(vector<int>& nums, int diff)
{
//2367. 等差三元组的数目
/* 给你一个下标从 0 开始、严格递增 的整数数组 nums 和一个正整数 diff 。如果满足下述全部条件,则三元组(i, j, k) 就是一个 等差三元组 :
i < j < k ,
nums[j] - nums[i] == diff 且
nums[k] - nums[j] == diff
返回不同 等差三元组 的数目。
示例 1:
输入:nums = [0, 1, 4, 6, 7, 10], diff = 3
输出:2
解释:
(1, 2, 4) 是等差三元组:7 - 4 == 3 且 4 - 1 == 3 。
(2, 4, 5) 是等差三元组:10 - 7 == 3 且 7 - 4 == 3 。
3 <= nums.length <= 200
0 <= nums[i] <= 200
1 <= diff <= 50
nums 严格 递增*/
//其实也就是说,找三个数,满足等差数列,等差就是diff
// 最简单办法就是什么呢,三指针
int ans = 0;//计数用的
for (int i = 0, j = 1, k = 2; i < nums.size() - 2&&j < nums.size() - 1&& k < nums.size(); i++)
{
j = max(j, i + 1);
while (j < nums.size() - 1 && nums[j] - nums[i] < diff)
{
j++;
}
if (j >= nums.size() - 1 || nums[j] - nums[i] > diff)
{
continue;
}
k = max(k, j + 1);
while (k < nums.size() && nums[k] - nums[j] < diff)
{
k++;
}
if(k >= nums.size() || nums[k] - nums[j] > diff)
{
continue;
}
if (k < nums.size() && nums[k] - nums[j] == diff)
{
ans++;
}
}
return ans;
}
};
class Solution10 {
public:
int removeElement(vector<int>& nums, int val)
{
//27 移除元素
/* 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。
假设 nums 中不等于 val 的元素数量为 k,要通过此题,您需要执行以下操作:
更改 nums 数组,使 nums 的前 k 个元素包含不等于 val 的元素。nums 的其余元素和 nums 的大小并不重要。
返回 k。
示例 1:
输入:nums = [3, 2, 2, 3], val = 3
输出:2, nums = [2, 2, _, _]
解释:你的函数函数应该返回 k = 2, 并且 nums 中的前两个元素均为 2。
你在返回的 k 个元素之外留下了什么并不重要(因此它们并不计入评测)。*/
/*示例 2:
输入:nums = [0, 1, 2, 2, 3, 0, 4, 2], val = 2
输出:5, nums = [0, 1, 4, 0, 3, _, _, _]
解释:你的函数应该返回 k = 5,并且 nums 中的前五个元素为 0, 0, 1, 3, 4。
注意这五个元素可以任意顺序返回。
你在返回的 k 个元素之外留下了什么并不重要(因此它们并不计入评测)。*/
//本题我们可以看到,他是引用的方式传递进来,意味着我们修改了这个数组,外部的数组也会改变,那么我们看评测用例,这个我们发现只需要把非val
//的值放前面,val的值放后面,内部进行一个交换就可以,那我们可以用一个方法,双指针,一个在前,一个在后
//让左右指针往对向移动,左指针发现了是val就左右指针交换,然后右指针往前,左指针不动,左指针是不能动的以防交换的那个数也是val,右指针左移
//如果不是val,左指针左移
//最终我们需要返回非val的值,right指向最后一个元素,那么元素个数就是right+1
//基本的考虑完成需要考虑特殊情况,如果传入的数组只有一个元素怎么办,我们发现此时left是等于right的
//所以条件是left<=right
int left = 0;
int right = nums.size() - 1;
while (left <= right)
{
if (nums[left] == val)
{
int temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;
right--;
}
else
{
left++;
}
}
return right + 1;
}
};
class Solution11 {
public:
vector<int> buildArray(vector<int>& nums)
{
//1920基于排列构建数组
/*给你一个 从 0 开始的排列 nums(下标也从 0 开始)。请你构建一个 同样长度 的数组 ans ,其中,对于每个 i(0 <= i < nums.length),都满足 ans[i] = nums[nums[i]] 。返回构建好的数组 ans 。
从 0 开始的排列 nums 是一个由 0 到 nums.length - 1(0 和 nums.length - 1 也包含在内)的不同整数组成的数组。
示例 1:
输入:nums = [0, 2, 1, 5, 3, 4]
输出:[0, 1, 2, 4, 5, 3]
解释:数组 ans 构建如下:
ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]]
= [nums[0], nums[2], nums[1], nums[5], nums[3], nums[4]]
= [0, 1, 2, 4, 5, 3]
*/
//首先我们需要遍历一遍这个玩意,然后就按他说的来
int n = nums.size();
vector<int>v;
for (int i = 0; i < n; i++)
{
int temp = nums[i];
v.push_back(nums[temp]);
}
return v;
}
};
int main()
{
return 0;
}