一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1:
- 输入:points = [[10,16],[2,8],[1,6],[7,12]]
- 输出:2
- 解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
重点:
1.局部最优:每支箭都能射中交集最多的球;整体最优:用最少的箭射中所有的球
2.如何避免重复射到球:将球的边界缩小为交集的边界,即两个球的右边界的较小者
public static void main(String[] args) {
int[][] a ={{10,16},{2,8},{1,6},{7,12}};
System.out.println(shejian(a));
}
public static int shejian(int[][] arr){
int count = 1;
Arrays.sort(arr, (a, b) -> Integer.compare(a[0], b[0]));
for (int i = 1; i < arr.length; i++) {
if (arr[i][0] > arr[i - 1][1]){
count++;
}else {
arr[i][1] = Math.min(arr[i][1], arr[i - 1][1]);
//记录右边界--球能打到的最远地方,第二个的起始点避免重复射箭
}
}
return count;
}