回溯-全排列

1)数字不能重复使用(同一树枝不能重复)

使用used辅助数组,使用就改为true

2)排列不可重复(同一树层不可重复)

if (i >0 &&nums[i] == nums[i-1] && used[i-1] == false){
                //used[i-1] == false  说明同一数层使用过
                //used[i] == true  说明同一树枝使用过
                continue;
            }

i>0是防止数组索引i-1越界

3)整体代码

public static void main(String[] args) {
        int nums[] = {1,1,2};
        System.out.println(new T01().permuteUnique(nums));
    }
    //给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
    public List<List<Integer>> permuteUnique(int[] nums) {
        List<List<Integer>> res = new ArrayList<>();
        List<Integer> path = new LinkedList<>();
        boolean[] used = new boolean[nums.length];
        dfs(nums, res, path, used);
        return res;
    }

    private void dfs(int[] nums, List<List<Integer>> res, List<Integer> path, boolean[] used) {
        if (path.size() == nums.length){
            res.add(new ArrayList<>(path));
            return;
        }

        for (int i = 0; i < nums.length; i++) {
            if (i >0 &&nums[i] == nums[i-1] && used[i-1] == false){
                //used[i-1] == false  说明同一数层使用过
                //used[i] == true  说明同一树枝使用过
                continue;
            }
            if (used[i] == false){
                path.add(nums[i]);
                used[i] = true;//标记为使用过
                dfs(nums, res, path, used);
                path.remove(path.size()-1);
                used[i] = false;
            }

        }
    }

回溯算法是一种穷举搜索方法,通过逐步构建解决方案并撤销选择来找到所有可能的解决方案。在使用回溯算法时,我们需要考虑三个问题:可选列表、已选列表和结束条件。可选列表是指所有可以选择的元素,已选列表是指已经做出的选择,而结束条件是指已选列表满足题目条件时可以结束穷举。 下面是一个Python实现的回溯算法框架: ``` def backtrack(选择列表, 路径): if 终止条件: 存放结果 return for 选择 in 选择列表(本层集合中元素): 处理节点 backtrack(选择列表, 路径) 回溯,撤销处理结果 ``` 对于全排列问题,我们可以使用回溯算法来生成所有可能的排列。以下是一个使用回溯算法生成全排列的Python代码示例: ```python def permute(nums): def backtrack(first=0): if first == n: res.append(nums[:]) for i in range(first, n): nums[first], nums[i = nums[i], nums[first] backtrack(first + 1) nums[first], nums[i = nums[i], nums[first] n = len(nums) res = [] backtrack() return res ``` 这段代码中,我们定义了一个回溯函数`backtrack`,它用于递归地生成所有可能的排列。在每个递归步骤中,我们将当前位置的元素与后面的元素进行交换,然后递归地生成下一个位置的排列。当所有位置都填满时,我们将当前排列加入结果列表。 你可以使用这个函数来生成给定列表的全排列。例如,对于输入``,该函数将返回`[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]`作为结果。 请注意,这只是回溯算法的一种实现方式,可能还有其他方法来解决全排列问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [python 回溯法生成全排列](https://blog.csdn.net/weixin_55617081/article/details/125809941)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Python每日一练-----全排列回溯思想)](https://blog.csdn.net/m0_61791601/article/details/123971263)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值