洛谷-P1164-小A点菜

题目描述

不过 uim 由于买了一些书,口袋里只剩 M 元 (M≤10000)。

餐馆虽低端,但是菜品种类不少,有 N 种 (N≤100),第 i 种卖 a[ i ] 元 (a[ i ]≤1000)。由于是很低端的餐馆,所以每种菜只有一份。

小 A 奉行“不把钱吃光不罢休”,所以他点单一定刚好把 uim 身上所有钱花完。他想知道有多少种点菜方法。

由于小 A 肚子太饿,所以最多只能等待 11 秒。

输入格式

第一行是两个数字,表示 N 和 M。

第二行起 N 个正数 ai[ i ](可以有相同的数字,每个数字均在 1000 以内)。

输出格式

一个正整数,表示点菜方案数,保证答案的范围在 int 之内。

输入输出样例

输入

4 4
1 1 2 2

输出

3

我们把 f[ i ][ j ] 表示为:买前i道菜品,正好花了j元钱的选法的数量

那么略加思考,得出可以把所有选法划分为:买第i道菜品和不买第i道菜品

由于题目条件,我们可以知道当我们所持有的钱大于等于第i个菜品时,我们就一定会买,而当钱数不够时,我们当然也没办法买第i道菜品

所以:
        1.当j 大于等于 第i道菜的价值时(用a[ i ]表示),可以把状态表示为:

f[i - 1][ j ] + f[i - 1][j - a[i]]

即选第i道的情况与不选第i道的情况(题目要求所有的情况的数量)

此时我们发现如果j == a[i]时,f[i - 1][j - a[i]]就变成了f[i - 1][0],这种情况当然就等于1,所以我们分成两种情况:j == a[ i ]与j > a[ i ]

当j == a[ i ]时,f[ i ][ j ] = f[i - 1][ j ] + 1,当j > a[ i ]时,f[ i ][ j ] = f[i - 1][ j ] + f[i - 1][j - a[ i ]]

        2.当j 小于第i道菜的价值时,可以把状态表示为:

f[i - 1][ j ]


总和解释一下各种f[][]的含义:

f[i - 1][ j ]就代表了:选前i-1道菜,而且还正好花了j元钱,也代表了我们不买第i道菜所需要的方案数量

f[i - 1][j - a[ i ]]:选前i-1道菜,而且还正好花了j-a[ i ]元钱。当我们买了前i道菜花了j元钱时,我们减去这第i道菜然后减去买第i道菜花的钱,得到的方案数是不变的,也就是说f[i - 1][j - a[ i ]]就代表了买第i道菜的方案数量,这一思想在背包问题中也有所体现。


代码:

#include<iostream>
using namespace std;
const int N = 100+10;
const int M = 10010;

int a[N];
int f[N][M];
int n, m;

int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++)cin >> a[i];

	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			if (j == a[i])f[i][j] = f[i - 1][j] + 1;//f[i-1][0] = 1
			if (j < a[i])f[i][j] = f[i - 1][j];
			if (j > a[i])f[i][j] = f[i - 1][j] + f[i - 1][j - a[i]];
		}
	}

	cout << f[n][m];
	return 0;
}

此时我们又可以类比01背包问题来进行一维优化:
 

#include<iostream>
using namespace std;
const int N = 100+10;
const int M = 10010;

int a[N];
int f[M];
int n, m;

int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++)cin >> a[i];

	for (int i = 1; i <= n; i++) {
		for (int j = m; j >= 1; j--) {
			if (j == a[i])f[j] = f[j] + 1;//f[i-1][0] = 1
			if (j < a[i])f[j] = f[j];
			if (j > a[i])f[j] = f[j] + f[j - a[i]];
		}
	}

	cout << f[m];
	return 0;
}

不能忘记逆序

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这道题目是一道经典的背包问题,要求从给定的 n 种菜品中选出若干个菜品,使得它们的价格之和恰好为 m。 我们可以使用动态规划的方法来解决这个问题。具体来说,我们可以定义一个二维数组 f[i][j],表示从前 i 种菜品中选,总价值恰好为 j 的方案数。初始状态为 f[0][0] = 1,表示从 0 种菜品中选出总价值为 0 的方案数为 1(即不选任何菜品)。 然后,我们可以使用状态转移方程 f[i][j] = f[i-1][j] + f[i-1][j-a[i]],表示要么不选第 i 种菜品,此时方案数为 f[i-1][j];要么选第 i 种菜品,此时方案数为 f[i-1][j-a[i]],因为选了这个菜品后,剩余的价值就是 j-a[i]。 最后,我们输出 f[n][m],即从 n 种菜品中选出总价值恰好为 m 的方案数。 下面是 AC 代码和一些细节处理的实现建议: ```c++ #include <iostream> #include <cstring> using namespace std; const int MAXN = 105; const int MAXM = 10005; int f[MAXN][MAXM]; // f[i][j] 表示从前 i 种菜品中选,总价值恰好为 j 的方案数 int a[MAXN]; // a[i] 表示第 i 种菜品的价格 int main() { int n, m; cin >> n >> m; for (int i = 1; i <= n; i++) { cin >> a[i]; } memset(f, 0, sizeof(f)); // 初始化为 0 f[0][0] = 1; // 初始状态 for (int i = 1; i <= n; i++) { for (int j = a[i]; j <= m; j++) { // 注意这里要从 a[i] 开始枚举 f[i][j] = f[i-1][j] + f[i-1][j-a[i]]; // 状态转移方程 } } cout << f[n][m] << endl; // 输出最终答案 return 0; } ``` 需要注意的细节有: 1. 状态转移方程中,第二个下标 j 要从 a[i] 开始枚举,因为如果 j < a[i],则选第 i 种菜品的话,总价值就会小于 a[i],不符合题意。 2. 初始状态要赋值为 1,因为从 0 种菜品中选出总价值为 0 的方案数只有一种(即不选任何菜品)。 3. 可以使用 memset 函数将 f 数组初始化为 0。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值