题目地址:
https://www.luogu.com.cn/problem/P1164
题目背景:
uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种。uim指着墙上的价目表(太低级了没有菜单),说:“随便点”。
题目描述:
不过uim由于买了一些书,口袋里只剩
M
M
M元
(
M
≤
10000
)
(M \le 10000)
(M≤10000)。餐馆虽低端,但是菜品种类不少,有
N
N
N种
(
N
≤
100
)
(N \le 100)
(N≤100),第
i
i
i种卖
a
i
a_i
ai元
(
a
i
≤
1000
)
(a_i \le 1000)
(ai≤1000)。由于是很低端的餐馆,所以每种菜只有一份。小A奉行“不把钱吃光不罢休”,所以他点单一定刚好把uim身上所有钱花完。他想知道有多少种点菜方法。由于小A肚子太饿,所以最多只能等待
1
1
1秒。
输入格式:
第一行是两个数字,表示
N
N
N和
M
M
M。
第二行起
N
N
N个正数
a
i
a_i
ai(可以有相同的数字,每个数字均在
1000
1000
1000以内)。
输出格式:
一个正整数,表示点菜方案数,保证答案的范围在int之内。
设 f [ i ] [ j ] f[i][j] f[i][j]是只考虑前 i i i个物品的情况下,总价格恰好是 j j j的组合个数。则 f [ 0 ] [ 0 ] = 1 f[0][0]=1 f[0][0]=1。对于 f [ i ] [ j ] f[i][j] f[i][j],可以将其划分为两种情况讨论,如果不含第 i i i个物品,那么组合个数是 f [ i − 1 ] [ j ] f[i-1][j] f[i−1][j];如果含第 i i i个物品,则组合个数为 f [ i − 1 ] [ j − a i ] f[i-1][j-a_i] f[i−1][j−ai](当然在 j ≥ a i j\ge a_i j≥ai的情况下才有此可能),所以有: f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − a i ] f[i][j]=f[i-1][j]+f[i-1][j-a_i] f[i][j]=f[i−1][j]+f[i−1][j−ai]代码如下:
#include <iostream>
using namespace std;
const int N = 110, M = 10010;
int n, m;
int a[N];
int f[N][M];
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
f[0][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= a[i]) f[i][j] += f[i - 1][j - a[i]];
}
printf("%d\n", f[n][m]);
return 0;
}
时空复杂度 O ( N M ) O(NM) O(NM)。
考虑空间优化:
#include <iostream>
using namespace std;
const int N = 110, M = 10010;
int n, m;
int a[N];
int f[M];
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
f[0] = 1;
for (int i = 1; i <= n; i++)
// 从右向左更新
for (int j = m; j >= a[i]; j--)
f[j] += f[j - a[i]];
printf("%d\n", f[m]);
return 0;
}
时间复杂度一样,空间 O ( M ) O(M) O(M)。