【洛谷】P1164 小A点菜

题目地址:

https://www.luogu.com.cn/problem/P1164

题目背景:
uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种。uim指着墙上的价目表(太低级了没有菜单),说:“随便点”。

题目描述:
不过uim由于买了一些书,口袋里只剩 M M M ( M ≤ 10000 ) (M \le 10000) (M10000)。餐馆虽低端,但是菜品种类不少,有 N N N ( N ≤ 100 ) (N \le 100) (N100),第 i i i种卖 a i a_i ai ( a i ≤ 1000 ) (a_i \le 1000) (ai1000)。由于是很低端的餐馆,所以每种菜只有一份。小A奉行“不把钱吃光不罢休”,所以他点单一定刚好把uim身上所有钱花完。他想知道有多少种点菜方法。由于小A肚子太饿,所以最多只能等待 1 1 1秒。

输入格式:
第一行是两个数字,表示 N N N M M M
第二行起 N N N个正数 a i a_i ai(可以有相同的数字,每个数字均在 1000 1000 1000以内)。

输出格式:
一个正整数,表示点菜方案数,保证答案的范围在int之内。

f [ i ] [ j ] f[i][j] f[i][j]是只考虑前 i i i个物品的情况下,总价格恰好是 j j j的组合个数。则 f [ 0 ] [ 0 ] = 1 f[0][0]=1 f[0][0]=1。对于 f [ i ] [ j ] f[i][j] f[i][j],可以将其划分为两种情况讨论,如果不含第 i i i个物品,那么组合个数是 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j];如果含第 i i i个物品,则组合个数为 f [ i − 1 ] [ j − a i ] f[i-1][j-a_i] f[i1][jai](当然在 j ≥ a i j\ge a_i jai的情况下才有此可能),所以有: f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − a i ] f[i][j]=f[i-1][j]+f[i-1][j-a_i] f[i][j]=f[i1][j]+f[i1][jai]代码如下:

#include <iostream>
using namespace std;

const int N = 110, M = 10010;
int n, m;
int a[N];
int f[N][M];

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);

    f[0][0] = 1;
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++) {
            f[i][j] = f[i - 1][j];
            if (j >= a[i]) f[i][j] += f[i - 1][j - a[i]];
        }

    printf("%d\n", f[n][m]);

    return 0;
}

时空复杂度 O ( N M ) O(NM) O(NM)

考虑空间优化:

#include <iostream>
using namespace std;

const int N = 110, M = 10010;
int n, m;
int a[N];
int f[M];

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);

    f[0] = 1;
    for (int i = 1; i <= n; i++)
    	// 从右向左更新
        for (int j = m; j >= a[i]; j--)
            f[j] += f[j - a[i]];

    printf("%d\n", f[m]);

    return 0;
}

时间复杂度一样,空间 O ( M ) O(M) O(M)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值