AcWing.91,最短Hamilton路径(状态压缩dp)

给定一张 n n n 个点的带权无向图,点从 0∼ n n n−1 标号,求起点 0 到终点 n n n−1 的最短 Hamilton 路径。

Hamilton 路径的定义是从 0 到 n n n−1 不重不漏地经过每个点恰好一次。

输入格式
第一行输入整数 n n n

接下来 行每行 n n n 个整数,其中第 i i i 行第 j j j 个整数表示点 i i i j j j 的距离(记为 a [ i , j ] a[i,j] a[i,j])。

对于任意的 x x x, y y y, z z z,数据保证 a [ x , x ] a[x,x] a[x,x]=0, a [ x , y ] = a [ y , x ] a[x,y]=a[y,x] a[x,y]=a[y,x] 并且 a [ x , y ] + a [ y , z ] ≥ a [ x , z ] a[x,y]+a[y,z]≥a[x,z] a[x,y]+a[y,z]a[x,z]

输出格式
输出一个整数,表示最短 Hamilton 路径的长度。

数据范围
1 ≤ n n n ≤ 20
0 ≤ a [ i , j ] a[i,j] a[i,j] ≤ 107

输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出样例:

18

使用 f [ i ] [ j ] f[i][j] f[i][j]表示:从 0 0 0走到 j j j点,中间经过的点是 i i i(走过的点存到 i i i里)的所有路径中的最小路径

其中 i i i的每一位表示每一个点有没有走过, 1 1 1表示走过, 0 0 0表示没走过,如:当 i i i= 1011 1011 1011时,我们就走过了第 0 0 0个点,第 1 1 1个点,第 3 3 3个点。(从右向左看)

如何划分情况:以倒数第二个点来分类
如果倒数第二个点为0,1,2…, n n n-1,那么当经过 k k k走到 j j j点时,状态将由 f [ i − j , k ] + a [ k , j ] f[i-j,k] + a[k,j] f[ij,k]+a[k,j]转移过来

代码:

#include<iostream>
#include<cstring>
using namespace std;
const int N = 20, M = 1 << N;

int n;
int a[N][N];
int f[M][N];

int main() {
	cin >> n;
	for (int i = 0; i < n; i++)
		for (int j = 0; j < n; j++)
			cin >> a[i][j];

	memset(f, 0x3f, sizeof f);
	f[1][0] = 0;	//在第0个点时为0,初始化dp数组

	for (int i = 0; i < 1 << n; i++)	//枚举所有状态
		for (int j = 0; j < n; j++)
			if (i >> j & 1)		//当从0走到j时,i也一定满足在j这个点位上的数为1(包含j)
				for (int k = 0; k < n; k++)	//枚举从哪个点转移过来
					if ((i - (1 << j)) >> k & 1)	//i除去j之后,一定要满足i在k这个点位上的数为1
						f[i][j] = min(f[i][j], f[i - (1 << j)][k] + a[k][j]);	//状态转移

	cout << f[(1 << n) - 1][n - 1] << endl;	//走到n-1时的最短路径
	return 0;
}
  • 13
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
哈密顿回路是一种经过图中每个节点一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节点数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节点出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节点 if(pos == n) { // 判断最后一个节点是否与第一个节点相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节点 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节点是否可达 private static boolean isValid(int node, int pos) { // 如果节点已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节点与当前节点不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节点开始,依次尝试访问其它节点,直到找到一条哈密顿路径或者遍历完所有节点。在查找过程中,我们使用visited数组来标记节点是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节点是否可达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值