Acwing--91. 最短Hamilton路径(状态压缩dp)

给定一张 nn 个点的带权无向图,点从 0∼n−10∼n−1 标号,求起点 00 到终点 n−1n−1 的最短 Hamilton 路径。

Hamilton 路径的定义是从 00 到 n−1n−1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数 nn。

接下来 nn 行每行 nn 个整数,其中第 ii 行第 jj 个整数表示点 ii 到 jj 的距离(记为 a[i,j]a[i,j])。

对于任意的 x,y,zx,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x]a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]≥a[x,z]a[x,y]+a[y,z]≥a[x,z]。

输出格式

输出一个整数,表示最短 Hamilton 路径的长度。

数据范围

1≤n≤201≤n≤20
0≤a[i,j]≤1070≤a[i,j]≤107

输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出样例:

18

y总讲的太好了!!🥳🥳tql 

--------------------------------------

如果暴力(dfs)搜索所有的路径,时间复杂度10^18左右,肯定会超时的。那就优化一下,因为dfs过程中,我们care的量就只有   1.终点    2.哪些点走过。

所以直接用二进制来表示哪些点走过。所以f[i][j]:状态为i的情况下终点是j的最短路径。

例如:  走过0  2 3 :1 1 0 1 = 13   

用这种方法时间复杂度优化到10^6左右。

#include<bits/stdc++.h>
using namespace std;
const int N=20,M=1<<20;//m储存所有的二进制状态

int n;
int w[N][N];//储存二维矩阵,边长
int f[M][N];//状态为i的情况下到达j点的最短路径



int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
       for(int j=0;j<n;j++)
          cin>>w[i][j];
          
          
    memset(f,0x3f3f3f,sizeof(f));//初始化最短路径为最大值
    f[1][0]=0;//在0点的时候
    
    
    for(int i=0;i<1<<n;i++)//对于n个点,每个点都是两种情况,选和不选
       for(int j=0;j<n;j++)
          if(i>>j&1)//i的状态里包含j这个点
             for(int k=0;k<n;k++)
                if(i>>k&1)//i的状态里包含k这个点
                   f[i][j]=min(f[i][j],f[i-(1<<j)][k]+w[k][j]);
    
    
    
    cout<<f[(1<<n)-1][n-1];
             
    return 0;
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
哈密顿回路是一种经过图中每个节点一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节点数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节点出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节点 if(pos == n) { // 判断最后一个节点是否与第一个节点相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节点 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节点是否可达 private static boolean isValid(int node, int pos) { // 如果节点已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节点与当前节点不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节点开始,依次尝试访问其它节点,直到找到一条哈密顿路径或者遍历完所有节点。在查找过程中,我们使用visited数组来标记节点是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节点是否可达。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值