Codeforces Round 925 (Div. 3) D. Divisible Pairs(数学)

波利卡普有两个最喜欢的整数 x 和 y (它们可以相等),他找到了一个长度为 n 的数组 a 。

波利卡普认为一对索引 ⟨ i , j ⟩ ( 1 ≤ i < j ≤ n ) ⟨i,j⟩ ( 1≤i<j≤n ) i,j(1i<jn)是优美的,如果:

a i + a j a_i+a_j ai+aj 可以被 x x x 整除; a i − a j a_i−a_j aiaj 可以被 y y y 整除。
例如,如果 x = 5 , y = 2 , n = 6 , a = [ 1 , 2 , 7 , 4 , 9 , 6 ] x=5 , y=2 , n=6 , a= [ 1,2,7,4,9,6 ] x=5y=2n=6a=[1,2,7,4,9,6],那么唯一美丽的一对是:
⟨ 1 , 5 ⟩ : a 1 + a 5 = 1 + 9 = 10 ⟨1,5⟩ : a_1+a_5=1+9=10 1,5:a1+a5=1+9=10 ( 10 能被 5 整除)和 a 1 − a 5 = 1 − 9 = − 8 a1−a5=1−9=−8 a1a5=19=8 ( − 8 −8 8 能被 2 2 2 整除);
⟨ 4 , 6 ⟩ : a 4 + a 6 = 4 + 6 = 10 ⟨4,6⟩ : a_4+a_6=4+6=10 4,6:a4+a6=4+6=10 ( 10 能被 5 整除)和 a 4 − a 6 = 4 − 6 = − 2 a4−a6=4−6=−2 a4a6=46=2 ( − 2 −2 2 能被 2 2 2 整除)。
求数组 a 中优美数对的个数。

输入
输入的第一行包含一个整数 t ( 1 ≤ t ≤ 1 0 4 ) 。 ( 1 ≤ t ≤ 1 0 4 ) t ( 1≤t≤10^4 )。( 1≤t≤10^4 ) t(1t104)(1t104) - 测试用例的数量。然后是测试用例的描述。

每个测试用例的第一行包含三个整数 n n n x x x y y y ( 2 ≤ n ≤ 2 ⋅ 1 0 5 、 1 ≤ x , y ≤ 1 0 9 ) ( 2≤n≤2⋅10^5 、 1≤x,y≤10^9 ) (2n21051x,y109)–即数组的大小和波利卡普最喜欢的整数。

每个测试用例的第二行包含 n n n 个整数 a 1 , a 2 , … , a n ( 1 ≤ a i ≤ 1 0 9 ) a_1,a_2,…,a_n ( 1≤a_i≤10^9 ) a1,a2,,an(1ai109) - 数组的元素。

保证所有测试用例中 n n n 的总和不超过 2 ⋅ 1 0 5 2⋅10^5 2105

输出
对于每个测试用例,输出一个整数,即数组 a 中的漂亮配对数。


题目要求时间2s,数据范围为2e9, O ( N 2 ) O(N^2) O(N2)过不了,所以不用想暴力了。
对于此类数学题,可以在给出的公式的基础上进行一些推导。

首先根据题目要求,我们可以得到以下两个式子。
( a i + a j )    m o d    x = 0 ( a i − a j )    m o d    x = 0 (a_i + a_j)\ \ mod\ \ x = 0 \\(a_i - a_j)\ \ mod \ \ x = 0 (ai+aj)  mod  x=0(aiaj)  mod  x=0
先观察第一个式子,可以对这个式子进行一下演变: ( a i    m o d    x    +    a j    m o d    x )    m o d    x = 0 (a_i \ \ mod \ \ x \ \ +\ \ a_j\ \ mod\ \ x)\ \ mod\ \ x = 0 (ai  mod  x  +  aj  mod  x)  mod  x=0
这时候易知: a i    m o d    x a_i\ \ mod\ \ x ai  mod  x a j    m o d    x a_j\ \ mod\ \ x aj  mod  x的取值范围均为 [ 0   ,   x ) [0\ ,\ x) [0 , x),如果想要modx之后得到的得数是0,那么括号里的内容只有可能是x的倍数或者0。

如果是x的倍数,那么就只有可能是x本身,因为二者都无法取到x,那么相加最大值也到不了2x,所以最多只能取到x,这时候可以继续往下推得一个式子: a i   m o d   x   +   a j   m o d   x   =   x a i   m o d   x   =   ( x   −   a j   m o d   x ) a_i\ mod\ x\ +\ a_j\ mod\ x\ =\ x\\a_i\ mod\ x\ =\ (x\ -\ a_j\ mod\ x) ai mod x + aj mod x = xai mod x = (x  aj mod x)

如果取0的话,也可以继续推得一个式子: a i   m o d   x   +   a j   m o d   x   =   0 a i   m o d   x   =   ( − a j   m o d   x ) a_i\ mod\ x\ +\ a_j\ mod\ x\ =\ 0\\a_i\ mod\ x\ =\ (-a_j\ mod\ x) ai mod x + aj mod x = 0ai mod x = (aj mod x)
这里会取到负数,根据题目条件不存在负数,所以我们将其转化为仅取正数: a i   m o d   x   =   ( − a j   m o d   x   +   x )   m o d   x a_i\ mod\ x\ =\ (-a_j\ mod\ x\ +\ x)\ mod\ x ai mod x = (aj mod x + x) mod x

那么我们可以把两个式子整合为一个: a i   m o d   x   =   ( x   −   a j   m o d   x )   m o d   x a_i\ mod\ x\ =\ (x\ -\ a_j\ mod\ x)\ mod\ x ai mod x = (x  aj mod x) mod x
\\

现在我们对式子 ( a i − a j )    m o d    x = 0 (a_i - a_j)\ \ mod \ \ x = 0 (aiaj)  mod  x=0 进行推导。
往下化一步这个式子,可以得到: ( a i   m o d   y   −   a j   m o d   y )   m o d   y   =   0 (a_i\ mod\ y\ -\ a_j\ mod\ y)\ mod\ y\ =\ 0 (ai mod y  aj mod y) mod y = 0
在这里 a i   m o d   y a_i\ mod\ y ai mod y a j   m o d   y a_j\ mod\ y aj mod y 的取值范围是 [ 0 , y ) [0,y) [0,y) ,括号里的值应该满足是y的倍数或者是0才能够使等式成立,但是这里括号里的式子是两项相减,所以是不可能到达y的,所以取不到y的倍数,那么就只有取0。

在取0的时候,可以得到式子: a i   m o d   y   =   a j   m o d   y a_i\ mod\ y\ =\ a_j\ mod\ y ai mod y = aj mod y

推导到此就结束了,可以整合一下所有需要满足的条件:
{ a i   m o d   x   =   ( x   −   a j   m o d   x )   m o d   x a i   m o d   y   =   a j   m o d   y i < j \begin{cases} a_i\ mod\ x\ =\ (x\ -\ a_j\ mod\ x)\ mod\ x\\a_i\ mod\ y\ =\ a_j\ mod\ y\\i <j \end{cases} ai mod x = (x  aj mod x) mod xai mod y = aj mod yi<j

所以我们需要找的是满足以上三个条件的数对。

那么我们只需要 O ( N ) O(N) O(N) 从前往后扫一遍,并且维护记录 a i   m o d   x a_i\ mod\ x ai mod x a j   m o d   y a_j\ mod\ y aj mod y 的出现次数。

CODE:

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+10;
#define pii pair<int,int>

void solve(){
    int n,x,y;cin >> n >> x >> y;
    map<pii,int>cnt;
    vector<int>a(n+1);

    for(int i = 1;i <= n;i++)cin >> a[i];

    long long res = 0;
    for(int i = 1;i <= n;i++){
        long long aa = (x - a[i]%x)%x,bb = a[i]%y;  //对于j
        res += cnt[{aa,bb}];

        cnt[{a[i] % x,a[i]%y}]++;   //当前的数据是对于之后的i
    }
    cout << res << endl;
}

int main(){
    int T;cin >> T;
    while(T--){
        solve();
    }
    return 0;
}
  • 22
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值