动态规划板子题----最长上升子序列

题目描述

给出一个由 n(n≤5000)个不超过 106 的正整数组成的序列。请输出这个序列的最长上升子序列的长度。

最长上升子序列是指,从原序列中按顺序取出一些数字排在一起,这些数字是逐渐增大的。

输入格式

第一行,一个整数 n,表示序列长度。

第二行有 n 个整数,表示这个序列。

输出格式

一个整数表示答案。

输入输出样例

输入 #1复制

6
1 2 4 1 3 4

输出 #1复制

4

说明/提示

分别取出 1、2、3、4 即可。

思路:
 

定义状态dp[i] 表示一第 i 个 数为结尾的最长递增子序列的长度,那么有
                   dp[i] =max{  dp[j]  } +1 ,  0 < i <i  , Aj < Ai
最终答案是 max{dp[i] }。

复杂度分析: j 在0~i 滑动 ,复杂度为O(n) ; i 的变化范围也为O(n);总复杂度 O({_{n}}^{2})  。

代码实现:
 

#include<bits/stdc++.h>

using namespace std;

const int N=5010;

int a[N];

int dp[N];

int ans=0;

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n;
    cin>>n;

    for(int i=1;i<=n;i++) cin>>a[i];

    for(int i=1;i<=n;i++)
    {
        dp[i]=1;
        for(int j=1;j<i;j++)
        {
            if(a[i]>a[j]) dp[i]=max(dp[i],dp[j]+1);
        }
        ans=max(ans,dp[i]);
    }

    cout<<ans<<endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值