38. 外观数列
难度:中等
给定一个正整数 n ,输出外观数列的第 n 项。
「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。
你可以将其视作是由递归公式定义的数字字符串序列:
countAndSay(1) = "1"
countAndSay(n) 是对 countAndSay(n-1) 的描述,然后转换成另一个数字字符串。
前五项如下:
1. 1
2. 11
3. 21
4. 1211
5. 111221
第一项是数字 1
描述前一项,这个数是 1 即 “ 一 个 1 ”,记作 "11"
描述前一项,这个数是 11 即 “ 二 个 1 ” ,记作 "21"
描述前一项,这个数是 21 即 “ 一 个 2 + 一 个 1 ” ,记作 "1211"
描述前一项,这个数是 1211 即 “ 一 个 1 + 一 个 2 + 二 个 1 ” ,记作 "111221"
要 描述 一个数字字符串,首先要将字符串分割为 最小 数量的组,每个组都由连续的最多 相同字符 组成。然后对于每个组,先描述字符的数量,然后描述字符,形成一个描述组。要将描述转换为数字字符串,先将每组中的字符数量用数字替换,再将所有描述组连接起来。
示例 1:
输入:n = 1
输出:"1"
解释:这是一个基本样例。
示例 2:
输入:n = 4
输出:"1211"
解释:
countAndSay(1) = "1"
countAndSay(2) = 读 "1" = 一 个 1 = "11"
countAndSay(3) = 读 "11" = 二 个 1 = "21"
countAndSay(4) = 读 "21" = 一 个 2 + 一 个 1 = "12" + "11" = "1211"
这有点象个绕口令的数字游戏,很有趣。因为有趣,所以就一定要攻克这个问题。我觉得这个问题的题目叫“外观数列”有点让人不明所以,用“对前一项的描述”不是还直观一些吗?
对其中一个字符串如何进行描述,是解决这个问题的关键,我把它做成了一个函数fz(),为什么取这么一个函数名,事后自己也回想不起来了,反正简单。
fz函数功能:完成对字符串l的描述,最后返回该描述字符串
函数处理方法:对字符串l按从左到右的顺序依次处理
具体是:对第一个字符按顺序统计其连续出现的次数,将这个字符和出现次数组成一个键值对存于a列表中,对第二个出现的不同字符进行相同的处理,后续字符类似处理,最后再根据a列表中的键值对生成对整个字符串l的描述并返回。
第二个函数countAndSay(n),则是一个典型的递归函数,第n项是返回对第n-1项的描述,就很好处理了。
程序如下:
#对字符串l进行描述,返回描述的字符串,为了看得清楚,对键值对的描述之间以空格分隔
def fz(l):
a=[]
k=0
b=dict()
j=l[0]
for i in l:
if i==' ':
continue
if i==j:
k=k+1
else:
b[j]=k
a.append(b)
b=dict()
k=1
j=i
else:
b[j]=k
a.append(b)
b=''
for i in a:
x=list(i.keys())[0]
y=str(i[x])
b=b+y+x+' '
return b
#通过递归对输入的n进行解析,返回解析后的结果
def countAndSay(n):
if n==1:
return '1'
else:
return fz(countAndSay(n-1)) #返回对第n-1项的描述
n=int(input('pls input n='))
print(countAndSay(n))
运行实例一:
pls input n=4
12 11
运行实例二
pls input n=5
11 12 21
运行实例三
pls input n=6
31 22 11
运行实例四
pls input n=10
13 21 13 11 12 31 13 11 22 11
解决一个有趣的问题,让生活充满挑战和激情,不是一种更加充实的人生吗?