豆包MarsCode算法题:数组元素之和最小化

问题描述

在这里插入图片描述

思路分析

分析

  1. 元素两两不同:数组中所有元素必须是不同的。
  2. 元素的最大公约数为 k:所有的元素必须是 k 的倍数。
  3. 元素之和尽可能小:为了让元素的和最小,我们需要尽量选择最小的满足条件的元素。

思路

  • 首先,如果数组元素的最大公约数为 k,那么所有元素可以表示成 k * a1, k * a2, ..., k * an 的形式,其中 a1, a2, ..., ann 个互质的数。
  • 为了满足“元素之和尽可能小”,我们应该选择最小的 n 个互质数,且这些数的公约数为 1。
  • 最小的 n 个互质数依次是:1, 2, 3, …, n。

解决方案

  • 选择最小的 n 个互质数,分别是 1, 2, 3, ..., n
  • 这些数分别乘以 k,得到的数组为 k, 2k, 3k, ..., nk
  • 最终的数组元素之和就是 k * (1 + 2 + 3 + ... + n)

1 + 2 + 3 + ... + n 的和是一个已知公式:n * (n + 1) / 2

因此,数组的最小和就是 k * (n * (n + 1) / 2)

参考代码(Python)

def solution(n: int, k: int) -> int:
    # 计算 1 + 2 + 3 + ... + n 的和
    sum_of_first_n = n * (n + 1) // 2
    # 乘以 k 得到最终的和
    return k * sum_of_first_n

if __name__ == '__main__':
    print(solution(n = 3, k = 1) == 6)  # 1+2+3 = 6
    print(solution(n = 2, k = 2) == 6)  # 2+4 = 6
    print(solution(n = 4, k = 3) == 30) # 3+6+9+12 = 30

代码分析

1. solution 函数

def solution(n: int, k: int) -> int:
  • 功能:该函数的作用是返回一个包含 n 个元素的数组,其满足题目的条件:数组中的元素两两不同,所有元素的最大公约数为 k,并且这些元素之和尽可能小。
  • 参数
    • n: 数组中元素的个数。
    • k: 数组中每个元素的最大公约数。

2. 计算 1 + 2 + 3 + ... + n 的和

sum_of_first_n = n * (n + 1) // 2
  • 解释:为了尽可能使数组元素之和最小,我们选择最小的 n 个互质数,这些数是 1, 2, 3, ..., n

  • 数学公式1 + 2 + 3 + ... + n 的和是一个经典的数学公式:
    在这里插入图片描述

    该公式计算的是从 1 到 n 的所有整数的和。这个公式的时间复杂度是 O(1),只需要常数时间即可计算出结果。

  • 具体实现:使用整数除法 // 来确保计算结果为整数(在 Python 中,/ 默认会返回浮动类型,而我们这里需要整数结果)。

3. 乘以 k 得到最终的数组元素之和

return k * sum_of_first_n
  • 解释:计算完 1 + 2 + 3 + ... + n 的和后,乘以 k 得到数组中所有元素的和。
    • 例如,数组中的元素是 k, 2k, 3k, ..., nk,这些元素的和就是 k * (1 + 2 + 3 + ... + n),即 k 乘以 sum_of_first_n
    • 由于我们已经在前一步计算了 sum_of_first_n,这一步是将它乘以 k 得到最终的结果。

4. 主程序(if __name__ == '__main__':

if __name__ == '__main__':
    print(solution(n = 3, k = 1) == 6)  # 1+2+3 = 6
    print(solution(n = 2, k = 2) == 6)  # 2+4 = 6
    print(solution(n = 4, k = 3) == 30) # 3+6+9+12 = 30
  • 这里的 if __name__ == '__main__': 用来检查该文件是否作为主程序执行。如果是,代码就会运行里面的测试代码;如果这个文件被作为模块导入,里面的测试代码就不会执行。
  • 测试
    • solution(n = 3, k = 1) 返回的是 6,因为选取的是 1, 2, 3,它们的和是 6
    • solution(n = 2, k = 2) 返回的是 6,选取的是 2, 4,它们的和是 6
    • solution(n = 4, k = 3) 返回的是 30,选取的是 3, 6, 9, 12,它们的和是 30
代码的时间复杂度分析:
  • 计算和 1 + 2 + 3 + ... + n:这部分使用了数学公式,时间复杂度是 O(1)。
  • 乘以 k:这只是一个常数乘法操作,时间复杂度也是 O(1)。
  • 总时间复杂度:由于这两个操作的时间复杂度都是 O(1),所以整体时间复杂度是 O(1)。
代码的空间复杂度分析:
  • 该函数只使用了常数空间(除了输入和输出),所以空间复杂度也是 O(1)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凭君语未可

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值