DataLoader

 **前置知识:

test_loader=DataLoader(

dataset=test_set,

batch_size=64,

shuffle=False,

num_workers=0,

drop_last=True

)

1、DataLoader:

PyTorch 提供的一个工具,用于批量加载数据集,支持多线程加载

2、

dataset=test_set要加载的数据集
batch_size=64每个批次加载64张图片(batch:一批)
shuffle=False

False表示在加载数据时不打乱顺序,True表示打乱顺序

(shuffle:洗牌)

num_workers=0指定用于数据加载的子进程数,0表示只在主进程中进行
drop_last=True如果数据集的总大小不是批次大小的整数倍,设置为 True 会丢弃最后一个不足批次大小的部分

**代码:

加载数据集——>数据Loader处理——>tensorBoard记录

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

#dataset:要处理的数据集 batch_size:每次抓取几张图片 num_workers=0:只要主线程工作(多线程在wins上可能出错)drop_last:是否要舍弃不足数的部分
#shuffle:进行多轮数据处理时,是否要将数据打乱,使每轮的结果不一样
test_loader=DataLoader(dataset=test_set,batch_size=64,shuffle=False,num_workers=0,drop_last=True)

writer=SummaryWriter("log1")
for epoch in range(2):
    step=0
    for data in test_loader:
        imgs,targets=data
        writer.add_images(f"test2_Epoch: {epoch}",imgs,step)
        step=step+1
writer.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值