数学分析(下)
2024/7/4 By lhr
广义积分
P46
无穷限
-
定义为定积分的极限
-
积分第二中值定理P54
-
判断敛散性
- 可以积分的直接积分来观察极限是否存在
- 柯西收敛
- 比较判别法(记得绝对值)
- 与1/x^p比较(p>1 收敛,p <= 1发散)
- 迪利克雷判别法P57
- 被积函数=f(x)*g(x)
- f 积分有界
- g单调趋于零
- 阿贝尔判别法
- 被积函数=f(x)*g(x)
- f收敛
- g单调有界
瑕积分
P61
- 判断敛散性
- 柯西收敛
- 比较判别法
- 与1/(x-a)^p比较(p<1 收敛,p >= 1发散)
- 迪利克雷判别法
- 被积函数=f(x)*g(x)
- f 积分有界
- g单调趋于零
- 阿贝尔判别法
- 被积函数=f(x)*g(x)
- f收敛
- g单调有界
函数项级数
P70
- 函数序列
- 一串函数
- 函数项级数
- 函数序列对于每个确定x组成的数列
- 极限函数
- limfn(x) = f(x)
- 部分和序列
- 部分和
- 是n的函数
- 和函数
- 部分和序列的极限
- 一致收敛
- 级数极限=极限函数在x的取值
- 放心地交换极限次序(x->x0 / n->+∞)
- 放心地交换积分和极限的次序
- 放心地交换极限与微商的顺序
- 判断敛散性(部分和的思想)
- 可以积分的直接积分
- 达朗贝尔判别法
- 前后两项相除
- 柯西收敛
- 维尔斯特拉斯判别法(M判别法)
- |uk(x)| <= Mk
- Mk收敛
- 迪利克雷判别法
- anbn
- a一致有界
- b单调趋于零
- 阿贝尔判别法
- anbn
- a一致收敛
- b一致有界,每个b都单调
- 分析性质
- 逐项可积
- 求和和积分可交换
- 逐项求导
- 做题:求和函数
- 求收敛域2~3‘
- 看模板
- 有分母先导后积,无分母先积后导
- 写出和函数,记得结合实际情况把收敛域写出来
- 逐项可积
幂级数
P96
- 阿贝尔引理
- 收敛点之内收敛
- 发散点之外发散
- 收敛半径唯一
- 求收敛半径
- 相邻系数之比的极限
- 达朗贝尔判别法
- 求极限确定r
- 考虑边界
- 相邻系数之比的极限
- 阿贝尔第二引理P101
- 幂级数的和函数S在收敛区域内
- 逐项微商
- 逐项积分
- 函数的幂级数展开
傅里叶级数
P114
- 三角函数系
- 正交性(任意两个不同函数的乘积在-PI,PI积分为0)
- 收敛到傅里叶级数的条件
- 逐段可微
- 计算傅里叶系数(考题基本上都来自这里P142)
- 对称的
2
π
2\pi
2π区间上的
- 判断奇偶——简化
- KaTeX parse error: Undefined control sequence: \dd at position 34: …{-\pi}^\pi f(x)\̲d̲d̲ ̲x
- a n = 1 π ∫ − π π f ( x ) cos n x d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos{nx}dx an=π1∫−ππf(x)cosnxdx
- b n = 1 π ∫ − π π f ( x ) sin n x d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin{nx}dx bn=π1∫−ππf(x)sinnxdx
- f ( x ) = a 0 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) f(x)=a_0 + \sum_{n=1}^{\infty}(a_n\cos{nx} + b_n\sin{nx}) f(x)=a0+∑n=1∞(ancosnx+bnsinnx)
- 非对称的
- 周期为2L——变量代换 x = l x t x=\frac{l}{x}t x=xlt
- 记住延拓完之后,要把 x x x代入回原来的 f ( x ) f(x) f(x)当中
- 没有周期
- 奇延拓
- 偶延拓
- 对称的
2
π
2\pi
2π区间上的
平面点集与多元函数
P158
平面点集
-
概念明确
- 内点:存在邻域在E内
- 外点:存在邻域不在E内
- 边界点:任意邻域都有E的点也有E外的点
- 聚点:任意空心邻域有E内的点
-
关系
- 内点一定是聚点
- 边界点可能是聚点,也可能是孤立点
-
常见平面点集
- 开集:所有点都是内点
- 闭集:所有聚点都属于E
- 连通集:任意两点用有线条直线段相连
- (开)区域:连通的开集
- 闭区域:连通的闭集
-
关系
- 区域总是开集,反之不一定
- 闭区域总是闭集,反之不一定
-
(威尔斯特拉斯)W.T定理
-
如果点列 { P n } {\{P_n\}} {Pn}有界,那必有收敛子列
-
证明:连续用两次实数的致密性定理来证明(注意下标)
-
P n = ( x n , y n ) 有 界 , x n , y n 都 有 界 . x n 有 收 敛 子 列 x n k → x 0 , 那 么 y n k 也 有 界 , 有 收 敛 子 列 y n k l → y 0 , 那 么 x n k l 是 x n k 的 子 列 , 也 收 敛 于 x 0 所 以 有 收 敛 子 列 P_n=(x_n, y_n)有界,x_n, y_n都有界.\\x_n有收敛子列x_{n_k}\rightarrow x_0,那么y_{n_k}也有界,有收敛子列y_{n_{k_l}}\rightarrow y_0, 那么x_{n_{k_l}}是x_{n_k}的子列, 也收敛于x_0\\所以有收敛子列 Pn=(xn,yn)有界,xn,yn都有界.xn有收敛子列xnk→x0,那么ynk也有界,有收敛子列ynkl→y0,那么xnkl是xnk的子列,也收敛于x0所以有收敛子列
-
-
矩形套定理
- 一直缩小,最后所有的矩形交于一点
- 证明:对两个坐标方向分别用区间套定理
-
有限覆盖定理
- 如果有界闭集F被无限个开区间的集合∑所覆盖,那么必可从∑中选取有限个开区间所组成的∑*也覆盖F。
- 将无限转化为有限
二元函数
-
二元函数的极限问题(全面极限)
- 证明的时候要用极限的定义来证明
- 可以用三角换元,但是要满足保证在所有方向上趋近于原点(角度要取完)
- 证明极限不存在只需要找一个特例
-
累次极限
- 全面极限和两个累次极限的**存在性**并无必然联系
- 但当它们存在的时候,极限值有一定的关系
- 如果三个都存在,那么三者必相等
- 如果两个累次极限存在但是不相等,那么全面极限必不存在(沿着特殊方向的极限值不同)
-
二元函数的连续性
- 对于一个二元函数,如果对于任意固定的y是x的一元连续函数,同理,对于任意固定的x是y的一元连续函数,并**不能推出这个二元函数是连续**的
- 讨论连续性的问题
- 对于一般点,用定义,初等函数直接带入极限值
- 对于特殊点(没有定义的点),则要计算在该点的极限,然后看看要不要补充定义
- 复合函数的连续性(同时连续才算连续)
-
有界闭区域上的连续函数
-
有界
- 用反证法,假设无界
-
有最大值和最小值
-
一致连续
- 设 D D D是一个有界闭集, f ( x , y ) f(x,y) f(x,y)是定义在 D D D上的二元连续函数。
- 根据有界闭集的性质,我们知道 D D D上的任意点列都有收敛的子列,并且子列的极限点仍然在 D D D
- 假设 f ( x , y ) f(x,y) f(x,y)在 D D D上不一致连续,那么存在 ϵ 0 > 0 \epsilon_0 > 0 ϵ0>0,以及点列 ( x n , y n ) {(x_n, y_n)} (xn,yn)和 ( x n ′ , y n ′ ) {(x_n', y_n')} (xn′,yn′)( n = 1 , 2 , 3 , … n=1,2,3,\ldots n=1,2,3,…),满足
lim n → ∞ ( x n − x n ′ ) 2 + ( y n − y n ′ ) 2 = 0 , \lim_{{n \to \infty}} \sqrt{(x_n - x_n')^2 + (y_n - y_n')^2} = 0, limn→∞(xn−xn′)2+(yn−yn′)2=0,但
∣ f ( x n , y n ) − f ( x n ′ , y n ′ ) ∣ ≥ ϵ 0 . |f(x_n, y_n) - f(x_n', y_n')| \geq \epsilon_0. ∣f(xn,yn)−f(xn′,yn′)∣≥ϵ0.
-
由于 D D D是有界闭集,点列 ( x n , y n ) {(x_n, y_n)} (xn,yn)和 ( x n ′ , y n ′ ) {(x_n', y_n')} (xn′,yn′)都有收敛的子列。设 ( x n k , y n k ) {(x_{n_k}, y_{n_k})} (xnk,ynk)和 ( x n k ′ , y n k ′ ) {(x_{n_k}', y_{n_k}')} (xnk′,ynk′)是收敛的子列,且它们的极限分别为 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)和 ( x 0 ′ , y 0 ′ ) (x_0', y_0') (x0′,y0′)。
-
根据极限的性质,我们有
lim k → ∞ ( x n k − x n k ′ ) 2 + ( y n k − y n k ′ ) 2 = 0 , \lim_{{k \to \infty}} \sqrt{(x_{n_k} - x_{n_k}')^2 + (y_{n_k} - y_{n_k}')^2} = 0, limk→∞(xnk−xnk′)2+(ynk−ynk′)2=0,即 ( x 0 , y 0 ) = ( x 0 ′ , y 0 ′ ) (x_0, y_0) = (x_0', y_0') (x0,y0)=(x0′,y0′)。
- 由于 f ( x , y ) f(x,y) f(x,y)在 D D D上连续,根据连续函数的性质,我们有
lim k → ∞ f ( x n k , y n k ) = f ( x 0 , y 0 ) = f ( x 0 ′ , y 0 ′ ) = lim k → ∞ f ( x n k ′ , y n k ′ ) . \lim_{{k \to \infty}} f(x_{n_k}, y_{n_k}) = f(x_0, y_0) = f(x_0', y_0') = \lim_{{k \to \infty}} f(x_{n_k}', y_{n_k}'). limk→∞f(xnk,ynk)=f(x0,y0)=f(x0′,y0′)=limk→∞f(xnk′,ynk′).
-
但是这与第三步中的结论 ∣ f ( x n , y n ) − f ( x n ′ , y n ′ ) ∣ ≥ ϵ 0 |f(x_n, y_n) - f(x_n', y_n')| \geq \epsilon_0 ∣f(xn,yn)−f(xn′,yn′)∣≥ϵ0矛盾,因为当 k k k足够大时, ∣ f ( x n k , y n k ) − f ( x n k ′ , y n k ′ ) ∣ |f(x_{n_k}, y_{n_k}) - f(x_{n_k}', y_{n_k}')| ∣f(xnk,ynk)−f(xnk′,ynk′)∣应该小于 ϵ 0 \epsilon_0 ϵ0。
-
因此,我们的假设—— f ( x , y ) f(x,y) f(x,y)在 D D D上不一致连续——是错误的,所以 f ( x , y ) f(x,y) f(x,y)在 D D D上一致连续。
-
介值定理
-
偏导数与全微分
P180
偏导数
本质:把曲面取一个截面变成曲线,来研究曲线在某个方向的导数
注意:
- 与一元函数可导就连续不同,二元函数偏导数存在不能完全反映曲面性质
- 与一元函数可导即可微不同,二元函数必须偏导数连续,才可微
全微分
Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( ρ ) \Delta z=f(x_0+\Delta x, y_0+\Delta y)-f(x_0, y_0)=A\Delta x+B\Delta y +o(\rho) Δz=f(x0+Δx,y0+Δy)−f(x0,y0)=AΔx+BΔy+o(ρ)
d z = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y dz=f_x(x_0, y_0)\Delta x+f_y(x_0, y_0)\Delta y dz=fx(x0,y0)Δx+fy(x0,y0)Δy
二元函数的全微分是函数全该变量的线性主部(这后面在证明的时候有很大用,看变化量与全微分之差是不是距离的无穷小量)
dz其实是关于x, y, dx, dy的四元线性函数
而四者是独立的
所以在求二阶全微分的时候,有 d ( d x ) = d ( d y ) = 0 d(dx)=d(dy)=0 d(dx)=d(dy)=0
- 题型:判断函数在某一点的可微性
- 用定理:偏导数存在且在这一点连续
- 用定义:(用定义)先求出偏导数,注意区分 x 0 , Δ x x_0, \Delta x x0,Δx,用全变化减去微分,看是不是 o ( ρ ) o(\rho) o(ρ)
- 题型:求近似值
- 确定 x 0 , y 0 , Δ x , Δ y x_0, y_0, \Delta x, \Delta y x0,y0,Δx,Δy
- 根据微分的定义,写出 f ( x 0 + Δ x , y 0 + Δ y ) = f ( x 0 , y 0 ) + f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y f(x_0+\Delta x, y_0+\Delta y)=f(x_0, y_0)+f_x(x_0, y_0)\Delta x+f_y(x_0, y_0)\Delta y f(x0+Δx,y0+Δy)=f(x0,y0)+fx(x0,y0)Δx+fy(x0,y0)Δy
高阶全微分
画出树状图
若 f x y 与 f y x f_{xy}与f_{yx} fxy与fyx都连续则相等
d n u = ( ∂ ∂ x d x + ∂ ∂ y d y ) n f ( x , y ) d^nu=(\frac{\partial}{\partial x}dx+\frac{\partial}{\partial y}dy)^nf(x, y) dnu=(∂x∂dx+∂y∂dy)nf(x,y)
复合函数与隐函数微分
- 题型:直接考察求导
- 画出树状图,用**链式法则**,注意区分乘法的求导法则
- KaTeX parse error: Undefined control sequence: \part at position 54: …ac{\partial u}{\̲p̲a̲r̲t̲ ̲t}dt=(\frac{\pa…
- 题型:复合函数
- 例如
F
(
x
y
,
y
+
z
,
x
z
)
=
0
F(xy, y+z, xz)=0
F(xy,y+z,xz)=0,求KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲z}{\part x},\fr…
- 假设确定隐函数 z = z ( x , y ) z=z(x, y) z=z(x,y)
- 方程两边对xy分别求偏导
- 联立方程
- 例如
F
(
x
y
,
y
+
z
,
x
z
)
=
0
F(xy, y+z, xz)=0
F(xy,y+z,xz)=0,求KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲z}{\part x},\fr…
几何应用
求切向量法向量
- 曲线
- 曲线只有切向量和法平面
- 切向量 γ → = ( x ‘ ( t 0 ) , y ‘ ( t 0 ) , z ‘ ( t 0 ) ) = ( A , B , C ) \overrightarrow{\gamma}=(x`(t_0), y`(t_0), z`(t_0)) = (A,B,C) γ=(x‘(t0),y‘(t0),z‘(t0))=(A,B,C)
- 如果曲线由两个曲面 F , G F,G F,G的交线来定义,那么 γ → = ( ∂ ( F , G ) ∂ ( y , z ) , ∂ ( F , G ) ∂ ( z , x ) , ∂ ( F , G ) ∂ ( x , y ) ) \overrightarrow{\gamma}=(\frac{\partial(F, G)}{\partial(y, z)}, \frac{\partial(F, G)}{\partial(z, x)},\frac{\partial(F, G)}{\partial(x, y)}) γ=(∂(y,z)∂(F,G),∂(z,x)∂(F,G),∂(x,y)∂(F,G))
- 曲面
- 曲面只有切平面和法向量
- 法向量 n → = ( F x , F y , F z ) = ( A , B , C ) \overrightarrow{n}=(F_x, F_y, F_z) = (A, B, C) n=(Fx,Fy,Fz)=(A,B,C)
- 特别的,如果 z = f ( x , y ) z= f(x, y) z=f(x,y)那么
- 共同的部分
- 由一个向量求所在直线方程和垂直的平面方程
- 直线方程(自由度为1,所以要两个方程来限定): x − x 0 A = y − y 0 B = z − z 0 C \frac{x-x_0}{A} = \frac{y-y_0}{B}=\frac{z-z_0}{C} Ax−x0=By−y0=Cz−z0
- 平面方程(自由度为2,所以只需要一个方程): A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(x−x0)+B(y−y0)+C(z−z0)=0
方向导数
沿 着 l 方 向 的 方 向 余 弦 l 0 = ( c o s α , c o s β , c o s γ ) 沿着l方向的方向余弦l_0=(cos\alpha, cos\beta, cos\gamma) 沿着l方向的方向余弦l0=(cosα,cosβ,cosγ)
KaTeX parse error: Undefined control sequence: \grad at position 3: 梯度\̲g̲r̲a̲d̲=(\frac{\part f…
方向导数就是给梯度赋权,权值就是方向余弦
所以KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲f}{\part l}=\gr…
泰勒展开
KaTeX parse error: Undefined control sequence: \part at position 61: …ac 1{k!}(\frac{\̲p̲a̲r̲t̲}{\part x}dx+\f…
隐函数存在定理
P225
单个方程的形式
如 果 F ( x , y ) 在 某 一 点 P 0 ( x 0 , y 0 ) 附 近 满 足 { 1. F x , F y 连 续 2. F ( P 0 ) = 0 ( 通 常 为 初 始 条 件 ) 3. F y ( P 0 ) ≠ 0 那 么 在 P 0 点 附 近 存 在 唯 一 的 隐 函 数 y = f ( x ) 且 在 x 0 邻 域 连 续 且 有 连 续 的 导 数 如果F(x, y)在某一点P_0(x_0, y_0)附近满足\\ \begin{cases} 1.F_x,F_y连续\\ 2. F(P_0)=0\space (通常为初始条件)\\ 3. F_y(P_0)\ne0 \end{cases}\\ 那么在P_0点附近存在唯一的隐函数y=f(x)\\ 且在x_0邻域连续\\ 且有连续的导数 如果F(x,y)在某一点P0(x0,y0)附近满足⎩⎪⎨⎪⎧1.Fx,Fy连续2.F(P0)=0 (通常为初始条件)3.Fy(P0)=0那么在P0点附近存在唯一的隐函数y=f(x)且在x0邻域连续且有连续的导数
方程组的形式
$$
F(x, y, u, v),G(x, y, u, v)满足\
\begin{cases}
- 对各变元有一阶连续偏导,\
- F(P_0)=G(P_0)=0,\
- J|_{P_0}=\frac{\part(F, G)}{\part(u, v)}\ne0
\end{cases}\
那么在P_0附近唯一确定连续的隐函数u=u(x, y), v=v(x, y)\
且有连续的导数
$$
- KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲(x, y)}{\part(u…
极值与条件极值
P241
多元函数的极值
-
稳定点——所有偏导数都为0
-
极值的**必要条件**
- 所有偏导数都为0
- 注意不是充分条件( z = x y 在 ( 0 , 0 ) 偏 导 数 都 为 0 , 但 是 在 该 点 附 近 都 有 异 号 的 函 数 值 z=xy在(0, 0)偏导数都为0,但是在该点附近都有异号的函数值 z=xy在(0,0)偏导数都为0,但是在该点附近都有异号的函数值)
-
D的定义:
- a 11 = f x x ( x 0 , y 0 ) , a 12 = f x y ( x 0 , y 0 ) , a 22 = f y y ( x 0 , y 0 ) , D = ∣ a 11 a 12 a 12 a 22 ∣ a_{11}=f_{xx}(x_0, y_0),\space a_{12}=f_{xy}(x_0, y_0),\space a_{22}=f_{yy}(x_0, y_0),\space \\ D= \left| \begin{matrix} a_{11} & a_{12}\\ a_{12} & a_{22} \end{matrix} \right| a11=fxx(x0,y0), a12=fxy(x0,y0), a22=fyy(x0,y0), D=∣∣∣∣a11a12a12a22∣∣∣∣
-
极值的判别(考察)
- (在该点的领域内有二阶连续偏导数)
f
x
(
x
0
,
y
0
)
=
f
y
(
x
0
,
y
0
)
=
0
f_x(x_0, y_0)=f_y(x_0, y_0)=0
fx(x0,y0)=fy(x0,y0)=0
- 若 D > 0 , 当 a 11 ( a 22 ) > 0 若D>0,当a_{11}(a_{22})>0 若D>0,当a11(a22)>0 取得极小值; 当 a 11 ( a 22 ) < 0 当a_{11}(a_{22})<0 当a11(a22)<0 取得极大值。
- 若 D < 0 若D<0 若D<0 不是极值点
- 若 D = 0 若D=0 若D=0 不能判断
- 证明:用泰勒公式
- 做题:
- 求一阶偏导,令偏导为0得到稳定点(注意在求解方程的时候,可能会得到两个未知数之间的关系,这个时候一定要带回方程里完全解出来)
- 求二阶偏导,算D
- 看 a 11 a_{11} a11的符号
- (在该点的领域内有二阶连续偏导数)
f
x
(
x
0
,
y
0
)
=
f
y
(
x
0
,
y
0
)
=
0
f_x(x_0, y_0)=f_y(x_0, y_0)=0
fx(x0,y0)=fy(x0,y0)=0
最小二乘法
本质上就是给了一个误差函数,求这个误差函数的极小值
-
f
(
a
,
b
)
=
∑
i
=
1
n
(
a
x
i
+
b
−
y
1
)
2
f(a, b)=\sum_{i=1}^{n}(ax_i+b-y_1)^2
f(a,b)=∑i=1n(axi+b−y1)2
- 对他求一阶导,令一阶导数为0,得到方程组
- 用克拉默法则解方程(注意a和b才是未知数)
多元函数的最值
一句话:可能的最值点包括可能的极值点和边界点
所以先求出极值点,以及边界值,然后做对比即可
条件极值
- 什么叫条件极值
- 在整个空间里的叫做无条件极值
- 有方程约束范围的叫做条件极值
- 每个(方程)条件就相当于一个隐函数,可以带入消元
- 思想:化为无条件极值求解
拉格朗日乘数法
对于上面提到的条件极值
假
设
f
(
x
,
y
,
u
,
v
)
在
约
束
条
件
{
F
(
x
,
y
,
u
,
v
)
=
0
,
G
(
x
,
y
,
u
,
v
)
=
0
(
F
,
G
不
重
)
在
P
0
(
x
0
,
y
0
,
u
0
,
v
0
)
点
取
极
值
那
么
存
在
唯
一
的
λ
1
,
λ
2
,
s
.
t
.
{
L
x
(
P
0
)
=
L
y
(
P
0
)
=
L
u
(
P
0
)
=
L
v
(
P
0
)
=
0
,
F
(
P
0
)
=
G
(
P
0
)
=
0
其
中
L
=
f
+
λ
1
F
+
λ
2
G
假设f(x, y, u, v)在约束条件 \begin{cases} F(x, y, u, v)=0,\\ G(x, y, u, v)=0\\ (F ,G不重) \end{cases} \space在P_0(x_0, y_0, u_0, v_0)点取极值\\ 那么存在唯一的\lambda_1, \space \lambda2, \space \\s.t. \begin{cases} L_x(P_0)=L_y(P_0)=L_u(P_0)=L_v(P_0)=0,\\ F(P_0)=G(P_0)=0 \end{cases}\\ 其中L=f+\lambda_1F+\lambda_2G
假设f(x,y,u,v)在约束条件⎩⎪⎨⎪⎧F(x,y,u,v)=0,G(x,y,u,v)=0(F,G不重) 在P0(x0,y0,u0,v0)点取极值那么存在唯一的λ1, λ2, s.t.{Lx(P0)=Ly(P0)=Lu(P0)=Lv(P0)=0,F(P0)=G(P0)=0其中L=f+λ1F+λ2G
- 做题
- 写出拉格朗日函数
- 求导,令导函数为0
- 解方程得到稳定点
- 通过极值的判断条件来判断
- 求二阶导数(求之前要用隐函数存在定理确定导数存在)
- D
- a 11 a_{11} a11
含参变量的积分
P270
一般情况
- 首先我们要理解什么叫含参变量的积分
每 一 个 [ a , b ] 上 固 定 的 x 0 , 对 应 的 ∫ c d f ( x 0 , y ) d y 都 是 一 个 [ 数 ] 当 x 变 动 的 时 候 , 就 定 义 了 一 个 [ 函 数 ] I ( x ) = ∫ c d f ( x , y ) d y , x ∈ [ a , b ] , 参 变 量 为 x 每一个[a, \ b]上固定的x_0,\ 对应的\int_c^df(x_0, y)dy都是一个[数]\\ 当x变动的时候,就定义了一个[函数]\\I(x)=\int_c^df(x, y)dy, x\in[a, b],\\ 参变量为x 每一个[a, b]上固定的x0, 对应的∫cdf(x0,y)dy都是一个[数]当x变动的时候,就定义了一个[函数]I(x)=∫cdf(x,y)dy,x∈[a,b],参变量为x
-
性质
- f f f 连续, I I I 就连续
- 放心交换积分和极限
- 只要偏导数连续就放心求导 I ′ ( x ) = ∫ c d f x ( x , y ) d y I'(x)=\int_c^df_x(x, y)dy I′(x)=∫cdfx(x,y)dy
-
题型:给你一个含参变量的函数,要求把其他变量消掉
- 大胆对内求导
- 把关于y的积分算出啦(消掉y)
- 求x的积分
- 确定常数C
-
题型:要求主动引入参变量的积分(压轴题)
- 引入参变量 α ∈ [ 0 , 1 ] \alpha\in[0, 1] α∈[0,1],原来的 I = I ( 1 ) I=I(1) I=I(1),最好保证 I ( 0 ) = 0 I(0)=0 I(0)=0(有利于后面构造积分)
- 对内求导数
- 把关于x的积分算出来
- I = I ( 1 ) = I ( 1 ) − I ( 0 ) = ∫ 0 1 I ′ ( α ) d α I=I(1)=I(1)-I(0)=\int_0^1I'(\alpha)d\alpha I=I(1)=I(1)−I(0)=∫01I′(α)dα
- 求出积分即可
积分上下限也依赖于参数x P265
I ( x , u ) = ∫ c u f ( x , y ) d y I(x,u)=\int_c^uf(x, y)dy I(x,u)=∫cuf(x,y)dy
请尤其关注这个式子
KaTeX parse error: Undefined control sequence: \dd at position 8: \frac{\̲d̲d̲(\ \int_c^xf(t)…
-
性质:
-
f f f连续则 I I I连续,放心求导,导函数存在且连续
-
不用担心连续问题:
-
KaTeX parse error: Undefined control sequence: \cross at position 11: f在[a,b]\̲c̲r̲o̲s̲s̲[c,d]连续,且c(x),d…
-
-
做题:求正常求不出来的积分的导数
-
性质:放心积分交换次序
- KaTeX parse error: Undefined control sequence: \dd at position 23: …分有\\ \int_a^b\̲d̲d̲ ̲x\int_c^df(x, y…
重积分
P292
三重积分交换次序
- 对于
∫
a
b
d
x
∫
c
d
d
y
∫
e
f
f
(
x
,
y
,
z
)
d
z
\int_a^bdx\int_c^ddy\int_e^ff(x, y, z)dz
∫abdx∫cddy∫eff(x,y,z)dz的两种理解
- ∫ a b [ ∬ D z d x d y ] d z \int_a^b[\iint_{Dz}dxdy]dz ∫ab[∬Dzdxdy]dz即先对特定z求切片面积,再对z求积分
- [ ∬ D d x d y ] ∫ ψ ( x , y ) φ ( x , y ) f ( x , y , z ) d z [\iint_{D}dxdy]\int^{\varphi(x, y)}_{\psi(x, y)}f(x, y, z)dz [∬Ddxdy]∫ψ(x,y)φ(x,y)f(x,y,z)dz即在xOy平面投影,作垂线,两个交点,做差,再对投影面积积分
- 不需要在意原理,只需知道两两可以交换次序(变成二重积分)
- ( ∫ a b d x ∫ c d d y ) ∫ e f d z (\int_a^bdx\int_c^ddy)\int_e^fdz (∫abdx∫cddy)∫efdz
- ∫ a b d x ( ∫ c d d y ∫ e f d z ) \int_a^bdx(\int_c^ddy\int_e^fdz) ∫abdx(∫cddy∫efdz)
三重积分的换元
曲线与曲面积分
第一型曲线积分
可以理解成线密度质量的模型
由于微分转化的时候用的是平方,无方向
- 做计算题, 一般给出的形式为
∫
L
f
(
x
,
y
,
z
)
d
s
\int_Lf(x, y, z)ds
∫Lf(x,y,z)ds
- 用参数来表示
- d s = x ‘ 2 ( t ) + y ‘ 2 ( t ) + z ‘ 2 ( t ) d t ds = \sqrt{x`^2(t)+y`^2(t)+z`^2(t)}dt ds=x‘2(t)+y‘2(t)+z‘2(t)dt
- 转化为普通定积分
第二型曲线积分
可以理解成变力做功的模型
d x / d y / d z dx/dy/dz dx/dy/dz给定了方向
- 做计算题,一般给出的形式为
∫
L
a
b
(
x
2
+
y
2
)
d
x
+
4
x
y
d
y
\int_{Lab}(x^2+y^2)dx+4xydy
∫Lab(x2+y2)dx+4xydy
- 寻找参数(可以是极坐标也可以是曲线方程)
- 对参数求导,转化微分
- 带入,转化为普通定积分求解
第一型曲面积分
最显著的特征在于,积分区域变了,原来是XoY平面,现在变成了某一曲面
可以将函数看作是曲面的面密度(与方向没有任何关系)
思想:将曲面投影到XoY平面,曲面上的一点唯一对应XoY上的一点,面积之比为这个点的梯度。从而转化为熟知的二重积分。
-
做计算题,一般给出的形式为 ∬ s x y z d s \iint_sxyzds ∬sxyzds
- ∬ S f ( x , y , z ) d s = ∬ D f ( x , y , z ( x , y ) ) 1 + z x 2 ( x , y ) + z y 2 ( x , y ) d x d y \iint_Sf(x, y, z)ds=\iint_Df(x, y, z(x, y))\sqrt{1+z_x^2(x, y)+z_y^2(x, y)}dxdy ∬Sf(x,y,z)ds=∬Df(x,y,z(x,y))1+zx2(x,y)+zy2(x,y)dxdy
- 转化为重积分解决
-
如果用参数表示,只需要
- r u = ( ∂ x ∂ u , ∂ y ∂ u , ∂ z ∂ u ) r v = ( ∂ x ∂ v , ∂ y ∂ v , ∂ z ∂ v ) r_u=(\frac{\partial{x}}{\partial{u}}, \frac{\partial{y}}{\partial{u}},\frac{\partial{z}}{\partial{u}})\\r_v=(\frac{\partial{x}}{\partial{v}}, \frac{\partial{y}}{\partial{v}},\frac{\partial{z}}{\partial{v}}) ru=(∂u∂x,∂u∂y,∂u∂z)rv=(∂v∂x,∂v∂y,∂v∂z)
- E = r u r u , F = r u r v , G = r v r v E=r_u{r_u},F=r_ur_v,G=r_vr_v E=ruru,F=rurv,G=rvrv
- d s = E G − F 2 d x d y ds=\sqrt{EG-F^2}dxdy ds=EG−F2dxdy
- 转化为重积分解决
-
特别地,如果三维的积分区域退化到二维,偏导数项为0, ∬ S f ( x , y , z ) d s = ∬ D f ( x , y , z ( x , y ) ) d x d y \iint_Sf(x, y, z)ds=\iint_Df(x, y, z(x, y))dxdy ∬Sf(x,y,z)ds=∬Df(x,y,z(x,y))dxdy也就是一个普通的二重积分
第二型曲面积分
本质上是通过法向量 n → = ( c o s α , c o s β , c o s γ ) \overrightarrow{n}=(cos\alpha, cos\beta, cos\gamma) n=(cosα,cosβ,cosγ)来链接, n → ⋅ d s → = ( d y d z , d z d x , d x d y ) \overrightarrow{n}\cdot{d\overrightarrow{s}}=(dydz,dzdx, dxdy) n⋅ds=(dydz,dzdx,dxdy)
- 做计算题,一般给出的形式为
I
=
∬
s
x
d
y
d
z
+
y
d
z
d
x
+
z
d
x
d
y
I=\iint_sxdydz+ydzdx+zdxdy
I=∬sxdydz+ydzdx+zdxdy
- 看有无对称性
- 投影到对应平面
- 消元(用已知量或者方程带入)
- 转化为重积分解决
各种积分之间的练习
格林公式
KaTeX parse error: Undefined control sequence: \part at position 47: … \iint_D(\frac{\̲p̲a̲r̲t̲ ̲Q}{\part x}-\fr…
补充
-
补充克拉默法则
- 对 于 一 个 二 元 一 次 方 程 组 : a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 其 中 , a 1 、 b 1 、 c 1 、 a 2 、 b 2 、 c 2 都 是 已 知 的 常 数 , 而 x 和 y 是 未 知 数 。 根 据 克 拉 默 法 则 , 方 程 组 的 解 可 以 通 过 以 下 公 式 来 表 示 : x = D 1 D , y = D 2 D 其 中 , D 是 方 程 组 的 系 数 行 列 式 , D 1 是 将 方 程 组 的 常 数 列 替 换 掉 x 的 系 数 列 所 得 到 的 行 列 式 , D 2 是 将 方 程 组 的 常 数 列 替 换 掉 y 的 系 数 列 所 得 到 的 行 列 式 。 对于一个二元一次方程组:\\ a_1x + b_1y = c_1\\ a_2x + b_2y = c_2\\ 其中,a_1、b_1、c_1、a_2、b_2、c_2都是已知的常数,而x和y是未知数。\\根据克拉默法则,方程组的解可以通过以下公式来表示:\\ x = \frac{D_1}{D},\space y = \frac{D_2}D\\ 其中,D是方程组的系数行列式,\\D1是将方程组的常数列替换掉x的系数列所得到的行列式,\\D2是将方程组的常数列替换掉y的系数列所得到的行列式。 对于一个二元一次方程组:a1x+b1y=c1a2x+b2y=c2其中,a1、b1、c1、a2、b2、c2都是已知的常数,而x和y是未知数。根据克拉默法则,方程组的解可以通过以下公式来表示:x=DD1, y=DD2其中,D是方程组的系数行列式,D1是将方程组的常数列替换掉x的系数列所得到的行列式,D2是将方程组的常数列替换掉y的系数列所得到的行列式。
-
处理 ∫ s e c 3 x d x \int{sec^3xdx} ∫sec3xdx
-
我们用分部积分,可以实现降次
-
∫ s e c 3 x d x = ∫ s e c x d ( t a n x ) = s e c x t a n x − ∫ t a n x d ( s e c x ) 而 ∫ t a n x d ( s e c x ) = ∫ t a n 2 x s e c x d x = ∫ ( s e c 2 − 1 ) s e c x d x = ∫ ( s e c 3 x − s e c x ) d x \int{sec^3xdx}=\int{secxd(tanx)} = secxtanx-\int{tanxd(secx)}\\ 而\int{tanxd(secx)} = \int{tan^2xsecxdx} = \int{(sec^2-1)secxdx} = \int{(sec^3x-secx)dx} ∫sec3xdx=∫secxd(tanx)=secxtanx−∫tanxd(secx)而∫tanxd(secx)=∫tan2xsecxdx=∫(sec2−1)secxdx=∫(sec3x−secx)dx
-
接下来移项即可
-
期末考试押题
-
2*广义积分
- 迪利克雷/Abel
-
函数项级数的收敛域
- 根值法
- 达朗贝尔
-
幂级数的和函数(展开)
- 收敛域
- 看模板
- 有分母微分,无分母积分
- 结合实际情况写出收敛域(否则扣分
-
傅里叶级数的展开
- 延拓
-
求偏导数
- 链式法则
- 方程组
- 隐函数求解法
-
极值与条件极值
- 拉格朗日乘数法
-
二元的微分中值定理
-
重积分
-
第一、二型曲线积分
- 参数化表示
-
格林公式
- 积分与路径无关
- 求原函数
-
第一型曲面积分