数学分析(下)复习笔记

数学分析(下)


2024/7/4 By lhr


广义积分

P46

无穷限

  • 定义为定积分的极限

  • 积分第二中值定理P54

  • 判断敛散性

    • 可以积分的直接积分来观察极限是否存在
    • 柯西收敛
    • 比较判别法(记得绝对值)
    • 与1/x^p比较(p>1 收敛,p <= 1发散)
    • 迪利克雷判别法P57
      • 被积函数=f(x)*g(x)
      • f 积分有界
      • g单调趋于零
    • 阿贝尔判别法
      • 被积函数=f(x)*g(x)
      • f收敛
      • g单调有界

瑕积分

P61

  • 判断敛散性
    • 柯西收敛
    • 比较判别法
    • 与1/(x-a)^p比较(p<1 收敛,p >= 1发散)
    • 迪利克雷判别法
      • 被积函数=f(x)*g(x)
      • f 积分有界
      • g单调趋于零
    • 阿贝尔判别法
      • 被积函数=f(x)*g(x)
      • f收敛
      • g单调有界

函数项级数

P70

  • 函数序列
    • 一串函数
  • 函数项级数
    • 函数序列对于每个确定x组成的数列
  • 极限函数
    • limfn(x) = f(x)
  • 部分和序列
    • 部分和
    • 是n的函数
  • 和函数
    • 部分和序列的极限
  • 一致收敛
    • 级数极限=极限函数在x的取值
    • 放心地交换极限次序(x->x0 / n->+∞)
    • 放心地交换积分和极限的次序
    • 放心地交换极限与微商的顺序
  • 判断敛散性(部分和的思想)
    • 可以积分的直接积分
    • 达朗贝尔判别法
      • 前后两项相除
    • 柯西收敛
    • 维尔斯特拉斯判别法(M判别法)
      • |uk(x)| <= Mk
      • Mk收敛
      • 迪利克雷判别法
        • anbn
        • a一致有界
        • b单调趋于零
      • 阿贝尔判别法
        • anbn
        • a一致收敛
        • b一致有界,每个b都单调
  • 分析性质
    • 逐项可积
      • 求和和积分可交换
    • 逐项求导
    • 做题:求和函数
      1. 求收敛域2~3‘
      2. 看模板image-20240704203711500
      3. 有分母先导后积,无分母先积后导
      4. 写出和函数,记得结合实际情况把收敛域写出来

幂级数

P96

  • 阿贝尔引理
    • 收敛点之内收敛
    • 发散点之外发散
  • 收敛半径唯一
  • 求收敛半径
    • 相邻系数之比的极限
      • 达朗贝尔判别法
      • 求极限确定r
      • 考虑边界
  • 阿贝尔第二引理P101
  • 幂级数的和函数S在收敛区域内
    • 逐项微商
    • 逐项积分
  • 函数的幂级数展开

傅里叶级数

P114

  • 三角函数系
    • 正交性(任意两个不同函数的乘积在-PI,PI积分为0)
  • 收敛到傅里叶级数的条件
    • 逐段可微
  • 计算傅里叶系数(考题基本上都来自这里P142)
    • 对称的 2 π 2\pi 2π区间上的
      • 判断奇偶——简化
      • KaTeX parse error: Undefined control sequence: \dd at position 34: …{-\pi}^\pi f(x)\̲d̲d̲ ̲x
      • a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos{nx}dx an=π1ππf(x)cosnxdx
      • b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin{nx}dx bn=π1ππf(x)sinnxdx
      • f ( x ) = a 0 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=a_0 + \sum_{n=1}^{\infty}(a_n\cos{nx} + b_n\sin{nx}) f(x)=a0+n=1(ancosnx+bnsinnx)
    • 非对称的
      • 周期为2L——变量代换 x = l x t x=\frac{l}{x}t x=xlt
      • 记住延拓完之后,要把 x x x代入回原来的 f ( x ) f(x) f(x)当中
      • 没有周期
        • 奇延拓
        • 偶延拓

平面点集与多元函数

P158

平面点集

  • 概念明确

    • 内点:存在邻域在E内
    • 外点:存在邻域不在E内
    • 边界点:任意邻域都有E的点也有E外的点
    • 聚点:任意空心邻域有E内的点
  • 关系

    • 内点一定是聚点
    • 边界点可能是聚点,也可能是孤立点
  • 常见平面点集

    • 开集:所有点都是内点
    • 闭集:所有聚点都属于E
    • 连通集:任意两点用有线条直线段相连
    • (开)区域:连通的开集
    • 闭区域:连通的闭集
  • 关系

    • 区域总是开集,反之不一定
    • 闭区域总是闭集,反之不一定
  • (威尔斯特拉斯)W.T定理

    • 如果点列 { P n } {\{P_n\}} {Pn}有界,那必有收敛子列

    • 证明:连续用两次实数的致密性定理来证明(注意下标)

    • P n = ( x n , y n ) 有 界 , x n , y n 都 有 界 . x n 有 收 敛 子 列 x n k → x 0 , 那 么 y n k 也 有 界 , 有 收 敛 子 列 y n k l → y 0 , 那 么 x n k l 是 x n k 的 子 列 , 也 收 敛 于 x 0 所 以 有 收 敛 子 列 P_n=(x_n, y_n)有界,x_n, y_n都有界.\\x_n有收敛子列x_{n_k}\rightarrow x_0,那么y_{n_k}也有界,有收敛子列y_{n_{k_l}}\rightarrow y_0, 那么x_{n_{k_l}}是x_{n_k}的子列, 也收敛于x_0\\所以有收敛子列 Pn=(xn,yn),xn,yn.xnxnkx0,ynkynkly0,xnklxnk,x0

  • 矩形套定理

    • 一直缩小,最后所有的矩形交于一点
    • 证明:对两个坐标方向分别用区间套定理
  • 有限覆盖定理

    • 如果有界闭集F被无限个开区间的集合∑所覆盖,那么必可从∑中选取有限个开区间所组成的∑*也覆盖F。
    • 将无限转化为有限

二元函数

  • 二元函数的极限问题(全面极限)

    • 证明的时候要用极限的定义来证明
    • 可以用三角换元,但是要满足保证在所有方向上趋近于原点(角度要取完)
    • 证明极限不存在只需要找一个特例
  • 累次极限

    • 全面极限和两个累次极限的**存在性**并无必然联系
    • 但当它们存在的时候,极限值有一定的关系
      • 如果三个都存在,那么三者必相等
      • 如果两个累次极限存在但是不相等,那么全面极限必不存在(沿着特殊方向的极限值不同)
  • 二元函数的连续性

    • 对于一个二元函数,如果对于任意固定的y是x的一元连续函数,同理,对于任意固定的x是y的一元连续函数,并**不能推出这个二元函数是连续**的
    • 讨论连续性的问题
      • 对于一般点,用定义,初等函数直接带入极限值
      • 对于特殊点(没有定义的点),则要计算在该点的极限,然后看看要不要补充定义
    • 复合函数的连续性(同时连续才算连续)
  • 有界闭区域上的连续函数

    • 有界

      • 用反证法,假设无界
    • 有最大值和最小值

    • 一致连续

      1. D D D是一个有界闭集, f ( x , y ) f(x,y) f(x,y)是定义在 D D D上的二元连续函数。
      2. 根据有界闭集的性质,我们知道 D D D上的任意点列都有收敛的子列,并且子列的极限点仍然在 D D D
      3. 假设 f ( x , y ) f(x,y) f(x,y) D D D上不一致连续,那么存在 ϵ 0 > 0 \epsilon_0 > 0 ϵ0>0,以及点列 ( x n , y n ) {(x_n, y_n)} (xn,yn) ( x n ′ , y n ′ ) {(x_n', y_n')} (xn,yn) n = 1 , 2 , 3 , … n=1,2,3,\ldots n=1,2,3,),满足

      lim ⁡ n → ∞ ( x n − x n ′ ) 2 + ( y n − y n ′ ) 2 = 0 , \lim_{{n \to \infty}} \sqrt{(x_n - x_n')^2 + (y_n - y_n')^2} = 0, limn(xnxn)2+(ynyn)2 =0,

      ∣ f ( x n , y n ) − f ( x n ′ , y n ′ ) ∣ ≥ ϵ 0 . |f(x_n, y_n) - f(x_n', y_n')| \geq \epsilon_0. f(xn,yn)f(xn,yn)ϵ0.

      1. 由于 D D D是有界闭集,点列 ( x n , y n ) {(x_n, y_n)} (xn,yn) ( x n ′ , y n ′ ) {(x_n', y_n')} (xn,yn)都有收敛的子列。设 ( x n k , y n k ) {(x_{n_k}, y_{n_k})} (xnk,ynk) ( x n k ′ , y n k ′ ) {(x_{n_k}', y_{n_k}')} (xnk,ynk)是收敛的子列,且它们的极限分别为 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 0 ′ , y 0 ′ ) (x_0', y_0') (x0,y0)

      2. 根据极限的性质,我们有

      lim ⁡ k → ∞ ( x n k − x n k ′ ) 2 + ( y n k − y n k ′ ) 2 = 0 , \lim_{{k \to \infty}} \sqrt{(x_{n_k} - x_{n_k}')^2 + (y_{n_k} - y_{n_k}')^2} = 0, limk(xnkxnk)2+(ynkynk)2 =0, ( x 0 , y 0 ) = ( x 0 ′ , y 0 ′ ) (x_0, y_0) = (x_0', y_0') (x0,y0)=(x0,y0)

      1. 由于 f ( x , y ) f(x,y) f(x,y) D D D上连续,根据连续函数的性质,我们有

      lim ⁡ k → ∞ f ( x n k , y n k ) = f ( x 0 , y 0 ) = f ( x 0 ′ , y 0 ′ ) = lim ⁡ k → ∞ f ( x n k ′ , y n k ′ ) . \lim_{{k \to \infty}} f(x_{n_k}, y_{n_k}) = f(x_0, y_0) = f(x_0', y_0') = \lim_{{k \to \infty}} f(x_{n_k}', y_{n_k}'). limkf(xnk,ynk)=f(x0,y0)=f(x0,y0)=limkf(xnk,ynk).

      1. 但是这与第三步中的结论 ∣ f ( x n , y n ) − f ( x n ′ , y n ′ ) ∣ ≥ ϵ 0 |f(x_n, y_n) - f(x_n', y_n')| \geq \epsilon_0 f(xn,yn)f(xn,yn)ϵ0矛盾,因为当 k k k足够大时, ∣ f ( x n k , y n k ) − f ( x n k ′ , y n k ′ ) ∣ |f(x_{n_k}, y_{n_k}) - f(x_{n_k}', y_{n_k}')| f(xnk,ynk)f(xnk,ynk)应该小于 ϵ 0 \epsilon_0 ϵ0

      2. 因此,我们的假设—— f ( x , y ) f(x,y) f(x,y) D D D上不一致连续——是错误的,所以 f ( x , y ) f(x,y) f(x,y) D D D上一致连续。

    • 介值定理

偏导数与全微分

P180

偏导数

本质:把曲面取一个截面变成曲线,来研究曲线在某个方向的导数

注意:

  1. 与一元函数可导就连续不同,二元函数偏导数存在不能完全反映曲面性质
  2. 与一元函数可导即可微不同,二元函数必须偏导数连续,才可微

全微分

Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( ρ ) \Delta z=f(x_0+\Delta x, y_0+\Delta y)-f(x_0, y_0)=A\Delta x+B\Delta y +o(\rho) Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(ρ)

d z = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y dz=f_x(x_0, y_0)\Delta x+f_y(x_0, y_0)\Delta y dz=fx(x0,y0)Δx+fy(x0,y0)Δy

二元函数的全微分是函数全该变量的线性主部(这后面在证明的时候有很大用,看变化量与全微分之差是不是距离的无穷小量)

dz其实是关于x, y, dx, dy的四元线性函数

而四者是独立的

所以在求二阶全微分的时候,有 d ( d x ) = d ( d y ) = 0 d(dx)=d(dy)=0 d(dx)=d(dy)=0

  • 题型:判断函数在某一点的可微性
    1. 用定理:偏导数存在且在这一点连续
    2. 用定义:(用定义)先求出偏导数,注意区分 x 0 , Δ x x_0, \Delta x x0,Δx,用全变化减去微分,看是不是 o ( ρ ) o(\rho) o(ρ)
  • 题型:求近似值
    1. 确定 x 0 , y 0 , Δ x , Δ y x_0, y_0, \Delta x, \Delta y x0,y0,Δx,Δy
    2. 根据微分的定义,写出 f ( x 0 + Δ x , y 0 + Δ y ) = f ( x 0 , y 0 ) + f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y f(x_0+\Delta x, y_0+\Delta y)=f(x_0, y_0)+f_x(x_0, y_0)\Delta x+f_y(x_0, y_0)\Delta y f(x0+Δx,y0+Δy)=f(x0,y0)+fx(x0,y0)Δx+fy(x0,y0)Δy

高阶全微分

画出树状图

F
u
t
x
y

f x y 与 f y x f_{xy}与f_{yx} fxyfyx都连续则相等

d n u = ( ∂ ∂ x d x + ∂ ∂ y d y ) n f ( x , y ) d^nu=(\frac{\partial}{\partial x}dx+\frac{\partial}{\partial y}dy)^nf(x, y) dnu=(xdx+ydy)nf(x,y)

复合函数与隐函数微分

  • 题型:直接考察求导
    • 画出树状图,用**链式法则**,注意区分乘法的求导法则
    • KaTeX parse error: Undefined control sequence: \part at position 54: …ac{\partial u}{\̲p̲a̲r̲t̲ ̲t}dt=(\frac{\pa…
  • 题型:复合函数
    • 例如 F ( x y , y + z , x z ) = 0 F(xy, y+z, xz)=0 F(xy,y+z,xz)=0,求KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲z}{\part x},\fr…
      1. 假设确定隐函数 z = z ( x , y ) z=z(x, y) z=z(x,y)
      2. 方程两边对xy分别求偏导
      3. 联立方程

几何应用

求切向量法向量
  • 曲线
    • 曲线只有切向量和法平面
    • 切向量 γ → = ( x ‘ ( t 0 ) , y ‘ ( t 0 ) , z ‘ ( t 0 ) ) = ( A , B , C ) \overrightarrow{\gamma}=(x`(t_0), y`(t_0), z`(t_0)) = (A,B,C) γ =(x(t0),y(t0),z(t0))=(A,B,C)
    • 如果曲线由两个曲面 F , G F,G F,G的交线来定义,那么 γ → = ( ∂ ( F , G ) ∂ ( y , z ) , ∂ ( F , G ) ∂ ( z , x ) , ∂ ( F , G ) ∂ ( x , y ) ) \overrightarrow{\gamma}=(\frac{\partial(F, G)}{\partial(y, z)}, \frac{\partial(F, G)}{\partial(z, x)},\frac{\partial(F, G)}{\partial(x, y)}) γ =((y,z)(F,G),(z,x)(F,G),(x,y)(F,G))
  • 曲面
    • 曲面只有切平面和法向量
    • 法向量 n → = ( F x , F y , F z ) = ( A , B , C ) \overrightarrow{n}=(F_x, F_y, F_z) = (A, B, C) n =(Fx,Fy,Fz)=(A,B,C)
    • 特别的,如果 z = f ( x , y ) z= f(x, y) z=f(x,y)那么
  • 共同的部分
    • 由一个向量求所在直线方程和垂直的平面方程
    • 直线方程(自由度为1,所以要两个方程来限定): x − x 0 A = y − y 0 B = z − z 0 C \frac{x-x_0}{A} = \frac{y-y_0}{B}=\frac{z-z_0}{C} Axx0=Byy0=Czz0
    • 平面方程(自由度为2,所以只需要一个方程): A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
方向导数

沿 着 l 方 向 的 方 向 余 弦 l 0 = ( c o s α , c o s β , c o s γ ) 沿着l方向的方向余弦l_0=(cos\alpha, cos\beta, cos\gamma) 沿ll0=(cosα,cosβ,cosγ)

KaTeX parse error: Undefined control sequence: \grad at position 3: 梯度\̲g̲r̲a̲d̲=(\frac{\part f…

方向导数就是给梯度赋权,权值就是方向余弦

所以KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲f}{\part l}=\gr…

泰勒展开

KaTeX parse error: Undefined control sequence: \part at position 61: …ac 1{k!}(\frac{\̲p̲a̲r̲t̲}{\part x}dx+\f…

隐函数存在定理

P225

单个方程的形式

如 果 F ( x , y ) 在 某 一 点 P 0 ( x 0 , y 0 ) 附 近 满 足 { 1. F x , F y 连 续 2. F ( P 0 ) = 0   ( 通 常 为 初 始 条 件 ) 3. F y ( P 0 ) ≠ 0 那 么 在 P 0 点 附 近 存 在 唯 一 的 隐 函 数 y = f ( x ) 且 在 x 0 邻 域 连 续 且 有 连 续 的 导 数 如果F(x, y)在某一点P_0(x_0, y_0)附近满足\\ \begin{cases} 1.F_x,F_y连续\\ 2. F(P_0)=0\space (通常为初始条件)\\ 3. F_y(P_0)\ne0 \end{cases}\\ 那么在P_0点附近存在唯一的隐函数y=f(x)\\ 且在x_0邻域连续\\ 且有连续的导数 F(x,y)P0(x0,y0)1.Fx,Fy2.F(P0)=0 ()3.Fy(P0)=0P0y=f(x)x0

方程组的形式

$$
F(x, y, u, v),G(x, y, u, v)满足\
\begin{cases}

  1. 对各变元有一阶连续偏导,\
  2. F(P_0)=G(P_0)=0,\
  3. J|_{P_0}=\frac{\part(F, G)}{\part(u, v)}\ne0

\end{cases}\
那么在P_0附近唯一确定连续的隐函数u=u(x, y), v=v(x, y)\
且有连续的导数
$$

  • KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲(x, y)}{\part(u…

极值与条件极值

P241

多元函数的极值

  • 稳定点——所有偏导数都为0

  • 极值的**必要条件**

    • 所有偏导数都为0
    • 注意不是充分条件( z = x y 在 ( 0 , 0 ) 偏 导 数 都 为 0 , 但 是 在 该 点 附 近 都 有 异 号 的 函 数 值 z=xy在(0, 0)偏导数都为0,但是在该点附近都有异号的函数值 z=xy(0,0)0
  • D的定义:

    • a 11 = f x x ( x 0 , y 0 ) ,   a 12 = f x y ( x 0 , y 0 ) ,   a 22 = f y y ( x 0 , y 0 ) ,   D = ∣ a 11 a 12 a 12 a 22 ∣ a_{11}=f_{xx}(x_0, y_0),\space a_{12}=f_{xy}(x_0, y_0),\space a_{22}=f_{yy}(x_0, y_0),\space \\ D= \left| \begin{matrix} a_{11} & a_{12}\\ a_{12} & a_{22} \end{matrix} \right| a11=fxx(x0,y0), a12=fxy(x0,y0), a22=fyy(x0,y0), D=a11a12a12a22
  • 极值的判别(考察)

    • (在该点的领域内有二阶连续偏导数) f x ( x 0 , y 0 ) = f y ( x 0 , y 0 ) = 0 f_x(x_0, y_0)=f_y(x_0, y_0)=0 fx(x0,y0)=fy(x0,y0)=0
      • 若 D > 0 , 当 a 11 ( a 22 ) > 0 若D>0,当a_{11}(a_{22})>0 D>0a11(a22)>0 取得极小值; 当 a 11 ( a 22 ) < 0 当a_{11}(a_{22})<0 a11(a22)<0 取得极大值。
      • 若 D < 0 若D<0 D<0 不是极值点
      • 若 D = 0 若D=0 D=0 不能判断
    • 证明:用泰勒公式
    • 做题:
      1. 求一阶偏导,令偏导为0得到稳定点(注意在求解方程的时候,可能会得到两个未知数之间的关系,这个时候一定要带回方程里完全解出来)
      2. 求二阶偏导,算D
      3. a 11 a_{11} a11的符号

最小二乘法

本质上就是给了一个误差函数,求这个误差函数的极小值

  • f ( a , b ) = ∑ i = 1 n ( a x i + b − y 1 ) 2 f(a, b)=\sum_{i=1}^{n}(ax_i+b-y_1)^2 f(a,b)=i=1n(axi+by1)2
    1. 对他求一阶导,令一阶导数为0,得到方程组
    2. 用克拉默法则解方程(注意a和b才是未知数)

多元函数的最值

一句话:可能的最值点包括可能的极值点和边界点

所以先求出极值点,以及边界值,然后做对比即可

条件极值

  • 什么叫条件极值
    • 在整个空间里的叫做无条件极值
    • 有方程约束范围的叫做条件极值
      • 每个(方程)条件就相当于一个隐函数,可以带入消元
      • 思想:化为无条件极值求解

拉格朗日乘数法

对于上面提到的条件极值
假 设 f ( x , y , u , v ) 在 约 束 条 件 { F ( x , y , u , v ) = 0 , G ( x , y , u , v ) = 0 ( F , G 不 重 )   在 P 0 ( x 0 , y 0 , u 0 , v 0 ) 点 取 极 值 那 么 存 在 唯 一 的 λ 1 ,   λ 2 ,   s . t . { L x ( P 0 ) = L y ( P 0 ) = L u ( P 0 ) = L v ( P 0 ) = 0 , F ( P 0 ) = G ( P 0 ) = 0 其 中 L = f + λ 1 F + λ 2 G 假设f(x, y, u, v)在约束条件 \begin{cases} F(x, y, u, v)=0,\\ G(x, y, u, v)=0\\ (F ,G不重) \end{cases} \space在P_0(x_0, y_0, u_0, v_0)点取极值\\ 那么存在唯一的\lambda_1, \space \lambda2, \space \\s.t. \begin{cases} L_x(P_0)=L_y(P_0)=L_u(P_0)=L_v(P_0)=0,\\ F(P_0)=G(P_0)=0 \end{cases}\\ 其中L=f+\lambda_1F+\lambda_2G f(x,y,u,v)F(x,y,u,v)=0,G(x,y,u,v)=0(F,G) P0(x0,y0,u0,v0)λ1, λ2, s.t.{Lx(P0)=Ly(P0)=Lu(P0)=Lv(P0)=0,F(P0)=G(P0)=0L=f+λ1F+λ2G

  • 做题
    1. 写出拉格朗日函数
    2. 求导,令导函数为0
    3. 解方程得到稳定点
    4. 通过极值的判断条件来判断
      1. 求二阶导数(求之前要用隐函数存在定理确定导数存在)
      2. D
      3. a 11 a_{11} a11

含参变量的积分

P270

一般情况
  • 首先我们要理解什么叫含参变量的积分

每 一 个 [ a ,   b ] 上 固 定 的 x 0 ,   对 应 的 ∫ c d f ( x 0 , y ) d y 都 是 一 个 [ 数 ] 当 x 变 动 的 时 候 , 就 定 义 了 一 个 [ 函 数 ] I ( x ) = ∫ c d f ( x , y ) d y , x ∈ [ a , b ] , 参 变 量 为 x 每一个[a, \ b]上固定的x_0,\ 对应的\int_c^df(x_0, y)dy都是一个[数]\\ 当x变动的时候,就定义了一个[函数]\\I(x)=\int_c^df(x, y)dy, x\in[a, b],\\ 参变量为x [a, b]x0, cdf(x0,y)dy[]x[]I(x)=cdf(x,y)dy,x[a,b],x

  • 性质

    • f f f 连续, I I I 就连续
    • 放心交换积分和极限
    • 只要偏导数连续就放心求导 I ′ ( x ) = ∫ c d f x ( x , y ) d y I'(x)=\int_c^df_x(x, y)dy I(x)=cdfx(x,y)dy
  • 题型:给你一个含参变量的函数,要求把其他变量消掉

    • 大胆对内求导
    • 把关于y的积分算出啦(消掉y)
    • 求x的积分
    • 确定常数C
  • 题型:要求主动引入参变量的积分(压轴题)

    • 引入参变量 α ∈ [ 0 , 1 ] \alpha\in[0, 1] α[0,1],原来的 I = I ( 1 ) I=I(1) I=I(1),最好保证 I ( 0 ) = 0 I(0)=0 I(0)=0(有利于后面构造积分)
    • 对内求导数
    • 把关于x的积分算出来
    • I = I ( 1 ) = I ( 1 ) − I ( 0 ) = ∫ 0 1 I ′ ( α ) d α I=I(1)=I(1)-I(0)=\int_0^1I'(\alpha)d\alpha I=I(1)=I(1)I(0)=01I(α)dα
    • 求出积分即可
积分上下限也依赖于参数x P265

I ( x , u ) = ∫ c u f ( x , y ) d y I(x,u)=\int_c^uf(x, y)dy I(x,u)=cuf(x,y)dy

请尤其关注这个式子
KaTeX parse error: Undefined control sequence: \dd at position 8: \frac{\̲d̲d̲(\ \int_c^xf(t)…

  • 性质:

    • f f f连续则 I I I连续,放心求导,导函数存在且连续

    • 不用担心连续问题:

    • KaTeX parse error: Undefined control sequence: \cross at position 11: f在[a,b]\̲c̲r̲o̲s̲s̲[c,d]连续,且c(x),d…

  • 做题:求正常求不出来的积分的导数

  • 性质:放心积分交换次序

    • KaTeX parse error: Undefined control sequence: \dd at position 23: …分有\\ \int_a^b\̲d̲d̲ ̲x\int_c^df(x, y…

重积分

P292

三重积分交换次序

  • 对于 ∫ a b d x ∫ c d d y ∫ e f f ( x , y , z ) d z \int_a^bdx\int_c^ddy\int_e^ff(x, y, z)dz abdxcddyeff(x,y,z)dz的两种理解
    • ∫ a b [ ∬ D z d x d y ] d z \int_a^b[\iint_{Dz}dxdy]dz ab[Dzdxdy]dz即先对特定z求切片面积,再对z求积分
    • [ ∬ D d x d y ] ∫ ψ ( x , y ) φ ( x , y ) f ( x , y , z ) d z [\iint_{D}dxdy]\int^{\varphi(x, y)}_{\psi(x, y)}f(x, y, z)dz [Ddxdy]ψ(x,y)φ(x,y)f(x,y,z)dz即在xOy平面投影,作垂线,两个交点,做差,再对投影面积积分
  • 不需要在意原理,只需知道两两可以交换次序(变成二重积分)
    • ( ∫ a b d x ∫ c d d y ) ∫ e f d z (\int_a^bdx\int_c^ddy)\int_e^fdz (abdxcddy)efdz
    • ∫ a b d x ( ∫ c d d y ∫ e f d z ) \int_a^bdx(\int_c^ddy\int_e^fdz) abdx(cddyefdz)

三重积分的换元

  • 关键是雅可比行列式 ∂ ( x , y ) ∂ ( u , v ) \frac{\partial{(x, y)}}{\partial{(u, v)}} (u,v)(x,y)

曲线与曲面积分

第一型曲线积分

可以理解成线密度质量的模型

由于微分转化的时候用的是平方,无方向

  • 做计算题, 一般给出的形式为 ∫ L f ( x , y , z ) d s \int_Lf(x, y, z)ds Lf(x,y,z)ds
    • 用参数来表示
    • d s = x ‘ 2 ( t ) + y ‘ 2 ( t ) + z ‘ 2 ( t ) d t ds = \sqrt{x`^2(t)+y`^2(t)+z`^2(t)}dt ds=x2(t)+y2(t)+z2(t) dt
    • 转化为普通定积分
第二型曲线积分

可以理解成变力做功的模型

d x / d y / d z dx/dy/dz dx/dy/dz给定了方向

  • 做计算题,一般给出的形式为 ∫ L a b ( x 2 + y 2 ) d x + 4 x y d y \int_{Lab}(x^2+y^2)dx+4xydy Lab(x2+y2)dx+4xydy
    • 寻找参数(可以是极坐标也可以是曲线方程)
    • 对参数求导,转化微分
    • 带入,转化为普通定积分求解
第一型曲面积分

最显著的特征在于,积分区域变了,原来是XoY平面,现在变成了某一曲面

可以将函数看作是曲面的面密度(与方向没有任何关系)

思想:将曲面投影到XoY平面,曲面上的一点唯一对应XoY上的一点,面积之比为这个点的梯度。从而转化为熟知的二重积分。

  • 做计算题,一般给出的形式为 ∬ s x y z d s \iint_sxyzds sxyzds

    • ∬ S f ( x , y , z ) d s = ∬ D f ( x , y , z ( x , y ) ) 1 + z x 2 ( x , y ) + z y 2 ( x , y ) d x d y \iint_Sf(x, y, z)ds=\iint_Df(x, y, z(x, y))\sqrt{1+z_x^2(x, y)+z_y^2(x, y)}dxdy Sf(x,y,z)ds=Df(x,y,z(x,y))1+zx2(x,y)+zy2(x,y) dxdy
    • 转化为重积分解决
  • 如果用参数表示,只需要

    • r u = ( ∂ x ∂ u , ∂ y ∂ u , ∂ z ∂ u ) r v = ( ∂ x ∂ v , ∂ y ∂ v , ∂ z ∂ v ) r_u=(\frac{\partial{x}}{\partial{u}}, \frac{\partial{y}}{\partial{u}},\frac{\partial{z}}{\partial{u}})\\r_v=(\frac{\partial{x}}{\partial{v}}, \frac{\partial{y}}{\partial{v}},\frac{\partial{z}}{\partial{v}}) ru=(ux,uy,uz)rv=(vx,vy,vz)
    • E = r u r u , F = r u r v , G = r v r v E=r_u{r_u},F=r_ur_v,G=r_vr_v E=ruru,F=rurv,G=rvrv
    • d s = E G − F 2 d x d y ds=\sqrt{EG-F^2}dxdy ds=EGF2 dxdy
    • 转化为重积分解决
  • 特别地,如果三维的积分区域退化到二维,偏导数项为0, ∬ S f ( x , y , z ) d s = ∬ D f ( x , y , z ( x , y ) ) d x d y \iint_Sf(x, y, z)ds=\iint_Df(x, y, z(x, y))dxdy Sf(x,y,z)ds=Df(x,y,z(x,y))dxdy也就是一个普通的二重积分

第二型曲面积分

本质上是通过法向量 n → = ( c o s α , c o s β , c o s γ ) \overrightarrow{n}=(cos\alpha, cos\beta, cos\gamma) n =(cosα,cosβ,cosγ)来链接, n → ⋅ d s → = ( d y d z , d z d x , d x d y ) \overrightarrow{n}\cdot{d\overrightarrow{s}}=(dydz,dzdx, dxdy) n ds =(dydz,dzdx,dxdy)

  • 做计算题,一般给出的形式为 I = ∬ s x d y d z + y d z d x + z d x d y I=\iint_sxdydz+ydzdx+zdxdy I=sxdydz+ydzdx+zdxdy
    • 看有无对称性
    • 投影到对应平面
    • 消元(用已知量或者方程带入)
    • 转化为重积分解决

各种积分之间的练习

格林公式

KaTeX parse error: Undefined control sequence: \part at position 47: … \iint_D(\frac{\̲p̲a̲r̲t̲ ̲Q}{\part x}-\fr…

补充

  • 补充克拉默法则

    • 对 于 一 个 二 元 一 次 方 程 组 : a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 其 中 , a 1 、 b 1 、 c 1 、 a 2 、 b 2 、 c 2 都 是 已 知 的 常 数 , 而 x 和 y 是 未 知 数 。 根 据 克 拉 默 法 则 , 方 程 组 的 解 可 以 通 过 以 下 公 式 来 表 示 : x = D 1 D ,   y = D 2 D 其 中 , D 是 方 程 组 的 系 数 行 列 式 , D 1 是 将 方 程 组 的 常 数 列 替 换 掉 x 的 系 数 列 所 得 到 的 行 列 式 , D 2 是 将 方 程 组 的 常 数 列 替 换 掉 y 的 系 数 列 所 得 到 的 行 列 式 。 对于一个二元一次方程组:\\ a_1x + b_1y = c_1\\ a_2x + b_2y = c_2\\ 其中,a_1、b_1、c_1、a_2、b_2、c_2都是已知的常数,而x和y是未知数。\\根据克拉默法则,方程组的解可以通过以下公式来表示:\\ x = \frac{D_1}{D},\space y = \frac{D_2}D\\ 其中,D是方程组的系数行列式,\\D1是将方程组的常数列替换掉x的系数列所得到的行列式,\\D2是将方程组的常数列替换掉y的系数列所得到的行列式。 a1x+b1y=c1a2x+b2y=c2a1b1c1a2b2c2xyx=DD1, y=DD2DD1xD2y
  • 处理 ∫ s e c 3 x d x \int{sec^3xdx} sec3xdx

    • 我们用分部积分,可以实现降次

    • ∫ s e c 3 x d x = ∫ s e c x d ( t a n x ) = s e c x t a n x − ∫ t a n x d ( s e c x ) 而 ∫ t a n x d ( s e c x ) = ∫ t a n 2 x s e c x d x = ∫ ( s e c 2 − 1 ) s e c x d x = ∫ ( s e c 3 x − s e c x ) d x \int{sec^3xdx}=\int{secxd(tanx)} = secxtanx-\int{tanxd(secx)}\\ 而\int{tanxd(secx)} = \int{tan^2xsecxdx} = \int{(sec^2-1)secxdx} = \int{(sec^3x-secx)dx} sec3xdx=secxd(tanx)=secxtanxtanxd(secx)tanxd(secx)=tan2xsecxdx=(sec21)secxdx=(sec3xsecx)dx

    • 接下来移项即可

期末考试押题

  • 2*广义积分

    • 迪利克雷/Abel
  • 函数项级数的收敛域

    • 根值法
    • 达朗贝尔
  • 幂级数的和函数(展开)

    1. 收敛域
    2. 看模板
    3. 有分母微分,无分母积分
    4. 结合实际情况写出收敛域(否则扣分
  • 傅里叶级数的展开

    • 延拓
  • 求偏导数

    • 链式法则
    • 方程组
    • 隐函数求解法
  • 极值与条件极值

    • 拉格朗日乘数法
  • 二元的微分中值定理

  • 重积分

  • 第一、二型曲线积分

    • 参数化表示
  • 格林公式

    • 积分与路径无关
    • 求原函数
  • 第一型曲面积分

    总复习.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值