洛谷 P5723 【深基4.例13】质数口袋 题解

洛谷 P5723 【深基4.例13】质数口袋 题解

题目描述

小 A 有一个质数口袋,里面可以装各个质数。他从 2 2 2 开始,依次判断各个自然数是不是质数,如果是质数就会把这个数字装入口袋。

口袋的负载量就是口袋里的所有数字之和。

但是口袋的承重量有限,装的质数的和不能超过 L L L。给出 L L L,请问口袋里能装下几个质数?将这些质数从小往大输出,然后输出最多能装下的质数的个数,数字之间用换行隔开。

输入格式

一行一个正整数 L L L

输出格式

将这些质数从小往大输出,然后输出最多能装下的质数个数,所有数字之间有一空行。

样例 #1

样例输入 #1

100

样例输出 #1

2
3
5
7
11
13
17
19
23
9

样例 #2

样例输入 #2

5

样例输出 #2

2
3
2

样例 #3

样例输入 #3

11

样例输出 #3

2
3
5
3

提示

数据保证, 1 ≤ L ≤ 10 5 1 \le L \le {10}^5 1L105

思路

埃氏筛法
根据通过质数去把所有合数都删掉的思路,可以优化方一的普通筛法。
(因为合数都可以以质数的乘积形式获得)
时间复杂度分析:O(nloglogn)
1~n中有n/lnn个质数,
要比原来的nlnn少算lnn倍,粗略估计有O(n)
但真实的时间复杂度是O(nloglogn) 很小 几乎接近O(n)

代码

#include <bits/stdc++.h>
using namespace std;

const int N = 1e6 + 5; // 定义数组大小
int prime[N]; // 用于存储素数的数组
bool vis[N]; // 标记非素数的布尔数组

// 埃拉托色尼筛法函数,用于标记素数
int seive(int l) {
    int n = 0; // 记录素数的数量
    fill(vis, vis + l + 1, false); // 初始化标记数组
    for (int i = 2; i <= l; i++) { // 从2开始遍历到l
        if (!vis[i]) { // 如果i未被标记为非素数
            prime[n++] = i; // 将i存入素数数组
            for (int j = i * 2; j <= l; j += i) { // 标记i的所有倍数为非素数
                vis[j] = true;
            }
        }
    }
    return n; // 返回找到的素数数量
}

int main() {
    int l;
    cin >> l; // 输入上限值l
    int num = seive(l); // 调用筛法函数,返回素数数量
    int sum = 0, n = 0; // 初始化素数和及计数器
    for (int i = 0; i < num; i++) {
        if (sum + prime[i] > l) break; // 如果当前和超过l,则退出循环
        cout << prime[i] << endl; // 输出当前素数
        sum += prime[i]; // 累加当前素数到和
        n++; // 素数计数器加1
    }
    cout << n << endl; // 输出素数个数
    return 0;
}

洛谷p5736 【深基7.2】质数筛是一个关于质数筛法的题目,要求我们根据输入的一个正整数n,找出小于等于n的所有质数质数是指只能被1和自身整除的大于1的整数,比如2、3、5、7等。质数筛法是一种常见且高效的找出质数的方法。 在这道题中,我们需要使用质数筛法来找出小于等于n的所有质数。首先,我们定义一个boolean类型的数组isPrime,用来标记每个数字是否是质数。初始时,我们将isPrime数组的所有元素都设置为true。 然后,我们从2开始遍历到n,对于每个数字i,如果isPrime[i]为true,说明这个数字是质数。那么我们就需要将i的倍数都标记为false,因为这些倍数一定不是质数。具体做法是,从2*i开始,每次增加i,将对应的isPrime数组的元素都置为false。 遍历结束后,isPrime数组中为true的元素即为小于等于n的所有质数。我们可以遍历isPrime数组,将为true的下标即为质数输出即可。 这个算法的时间复杂度是O(nloglogn),相较于直接遍历每个数字并判断是否是质数的方法,时间复杂度更低,效率更高。 对于这个题目的java实现,我们可以使用一个boolean数组isPrime来标记每个数字是否是质数,使用一个ArrayList来存储所有的质数,最后将ArrayList转化为数组输出。 代码示如下: ``` import java.util.ArrayList; public class Main{ public static void main(String[] args){ int n = 100; // 输入的正整数n boolean[] isPrime = new boolean[n+1]; // 标记每个数字是否是质数的数组 ArrayList<Integer> primes = new ArrayList<>(); // 存储质数的ArrayList // 初始化isPrime数组 for(int i=2; i<=n; i++){ isPrime[i] = true; } // 质数筛法 for(int i=2; i<=n; i++){ if(isPrime[i]){ primes.add(i); for(int j=2*i; j<=n; j+=i){ isPrime[j] = false; } } } // 将ArrayList转化为数组输出 int[] result = new int[primes.size()]; for(int i=0; i<primes.size(); i++){ result[i] = primes.get(i); } // 输出结果 for(int i=0; i<result.length; i++){ System.out.print(result[i] + " "); } } } ``` 这样,我们就可以通过这段代码来实现洛谷p5736题目的要求,找出小于等于输入的正整数n的所有质数,并将它们按从小到大的顺序输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值