1.问题描述:
给定无向连通图G=(V ,E),求图G 的最小色数k,使得用k种颜色对G中的顶点着色,可使任意两个相邻顶点着色不同.
2.问题分析:
贪心策略 :
(1)任选一顶点着颜色1,在图中寻找尽可能多的顶点用颜色1着色;
(2)任选未被颜色1着色的顶点,用颜色2着色在图中寻找尽可能多的顶点用颜色2着色;
(3)依次选取颜色3,4...重复以上操作,直到所有顶点都被着色,即可停止算法。
3.算法设计:
1.首先定义全局数组: 定义一个一维数组用于表示各个顶点的状态,一个二维数组用于存储图的各个边.
2.在算法中将所有顶点的访问状态初始化为未着色
3.用变量k来表示使用的颜色数目,将k初始化为0
4.使用while循环直到所有顶点均已着色,可以定义一个标志flag,先将flag标志初始化为true,并在循环体末尾添加判断,如果均已被着色,则修改flag=false,即可退出循环.
while循环体内部:
4.1 取下一种颜色即k++
4.2 使用for循环依次查看每个顶点的状态
4.2.1 如果顶点i已经着色,则使用continue语句跳转到4.2
4.2.2 顶点i为着色,则将顶点i对应的状态数组的值修改为当前k值,并进行判断,是否该顶点与它的相邻边的颜色存在冲突.如果存在冲突,则取消着色,重新置为0;
4.3 退出for循环,接着判断是否均已被着色,如果均已被着色,则修改flag标志.
5.循环输出各点的着色状态
4.代码实现:
#include<iostream>
using namespace std;
int color[100];
int edge[100][100];
int drawColor(int n)
{
bool flag = true;
int k = 0;
while (flag)
{
k++;
for (int i = 0; i < n; i++)
{
if (color[i] != 0) //如果当前顶点已经着色,则跳过
continue;
color[i] = k;
for (int j = 0; j < n; j++)
{
if (edge[i][j] == 1 && color[j] == k) //判断是否存在冲突
{
color[i] = 0; //如果冲突,则取消着色
break;
}
}
}
for (int i = 0; i < n; i++) //判断是否均已被着色
{
if (color[i] == 0)
break;
if (i == n - 1)
{
flag = false;
}
}
}
return k;
}
int main()
{
int n, n2, x, y;//边数
cin >> n >> n2;
for (int i = 0; i < n2; i++)
{
cin >> x >> y;
edge[x][y] = 1;
edge[y][x] = 1;
}
cout << "贪心算法得到颜色种数有:" << drawColor(n) << "种";
}