贪心法---图着色问题

1.问题描述:

       给定无向连通图G=(V ,E),求图G 的最小色数k,使得用k种颜色对G中的顶点着色,可使任意两个相邻顶点着色不同.

2.问题分析:

贪心策略 :

(1)任选一顶点着颜色1,在图中寻找尽可能多的顶点用颜色1着色;
(2)任选未被颜色1着色的顶点,用颜色2着色在图中寻找尽可能多的顶点用颜色2着色;
(3)依次选取颜色3,4...重复以上操作,直到所有顶点都被着色,即可停止算法。

3.算法设计:

       1.首先定义全局数组: 定义一个一维数组用于表示各个顶点的状态,一个二维数组用于存储图的各个边.

       2.在算法中将所有顶点的访问状态初始化为未着色

       3.用变量k来表示使用的颜色数目,将k初始化为0

       4.使用while循环直到所有顶点均已着色,可以定义一个标志flag,先将flag标志初始化为true,并在循环体末尾添加判断,如果均已被着色,则修改flag=false,即可退出循环.

         while循环体内部:

             4.1 取下一种颜色即k++

             4.2 使用for循环依次查看每个顶点的状态

                   4.2.1 如果顶点i已经着色,则使用continue语句跳转到4.2

                   4.2.2 顶点i为着色,则将顶点i对应的状态数组的值修改为当前k值,并进行判断,是否该顶点与它的相邻边的颜色存在冲突.如果存在冲突,则取消着色,重新置为0;

             4.3 退出for循环,接着判断是否均已被着色,如果均已被着色,则修改flag标志.

      5.循环输出各点的着色状态

4.代码实现:

#include<iostream>
using namespace std;
int color[100];
int edge[100][100];

int drawColor(int n)
{
	bool flag = true;
	int k = 0;
	while (flag)
	{
		k++;
		for (int i = 0; i < n; i++)
		{
			if (color[i] != 0)   //如果当前顶点已经着色,则跳过
				continue;
			color[i] = k;
			for (int j = 0; j < n; j++)
			{
				if (edge[i][j] == 1 && color[j] == k)   //判断是否存在冲突
				{
					color[i] = 0;  //如果冲突,则取消着色
					break;
				}
			}
		}
		for (int i = 0; i < n; i++)   //判断是否均已被着色
		{
			if (color[i] == 0)   
				break;
			if (i == n - 1)
			{
				flag = false;
			}
		}
		
		
	}
	return k;
}

int main()
{
	int n, n2, x, y;//边数
	cin >> n >> n2;
	for (int i = 0; i < n2; i++)
	{
		cin >> x >> y;
		edge[x][y] = 1;
		edge[y][x] = 1;
	}
	cout << "贪心算法得到颜色种数有:" << drawColor(n) << "种";

	
}

以下是贪心算法解决图着色C++代码: ```c++ #include<iostream> #include<vector> using namespace std; const int MAXN=1000; //最大节点数 vector<int> G[MAXN]; //图的邻接表表示 int color[MAXN]; //节点的颜色 bool vis[MAXN]; //节点是否被访问过 //尝试将节点v染成c色 bool dfs(int v, int c){ color[v]=c; //将节点v染成c色 vis[v]=true; //标记节点v已经被访问过 for(int i=0;i<G[v].size();i++){ int u=G[v][i]; if(vis[u]){ //如果节点u已经被访问过 if(color[u]==c) return false; //如果节点u和节点v颜色相同,说明着色失败 continue; //否则继续循环 } if(!dfs(u,3-c)) return false; //将节点u染成另一种颜色 } return true; } //图着色函数 bool graphColoring(int n){ for(int i=0;i<n;i++){ if(!vis[i]){ //如果节点i没有被访问过 if(!dfs(i,1)) return false; //将节点i染成颜色1,如果失败则返回false } } return true; } int main(){ int n,m; cin>>n>>m; //输入节点数n和边数m for(int i=0;i<m;i++){ int u,v; cin>>u>>v; //输入边的起点和终点 G[u].push_back(v); G[v].push_back(u); //加入无向边 } if(graphColoring(n)){ cout<<"Yes"<<endl; for(int i=0;i<n;i++) cout<<color[i]<<" "; //输出每个节点的颜色 } else cout<<"No"<<endl; return 0; } ``` 该代码使用了深度优先搜索来进行图的着色,并且使用了邻接表来表示图。在每次搜索过程中,将节点染成不同的颜色,并标记已经访问过的节点。如果搜索到一个已经被访问过的节点,判断其颜色是否与当前节点的颜色相同,如果相同则说明着色失败,否则继续循环。最后输出每个节点的颜色,并判断是否能够将图着色
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值