使用pyecharts绘制柱形图-折线图,圆环图,堆积柱形图,雷达图

文章详细介绍了如何使用Python的Pyecharts库绘制柱形图、折线图、圆环图、堆积柱形图和雷达图,展示了中医类医疗卫生机构的诊疗量变化以及中药材消费者画像数据,通过实例展示了数据可视化在医疗数据分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.柱形图-折线图

# 导入需要用的图表类
import pyecharts.options as opts
from pyecharts.charts import Bar,Line,Scatter,Pie

x_data = ["2014年", "2015年", "2016年", "2017年", "2018年", "2019年", "2020年", "2021年"]
#绘制柱形图
bar = (
    Bar()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="诊疗量",
        y_axis=[50000.0, 40000.9, 60000.0, 70000.2, 90200.2, 91000.7, 95000.6, 55000.6],
        label_opts=opts.LabelOpts(is_show=False),
        z =2,
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="同比增速(%)",
            type_="value",
            min_=-20,
            max_=20,
            interval=10,
            axislabel_opts=opts.LabelOpts(formatter="{value} "),
        )
    )
    .set_global_opts(
        tooltip_opts=opts.TooltipOpts(                                          #提示框配置项
            is_show=True, trigger="axis", axis_pointer_type="cross"          # trigger="axis" 触发类型。'axis': 坐标轴触发,主要在柱状图,折线图等会使用类目轴的图表中使用。
        ),
        title_opts=opts.TitleOpts(title="2014-2021年中国中医类医疗卫生机构诊疗量", pos_top="5%",pos_bottom="80%",pos_left="30%",pos_right="45%"),
        legend_opts=opts.LegendOpts(is_show=False,pos_top="20%"),
        
                     

        xaxis_opts=opts.AxisOpts(                                                 
            type_="category",                                                     # 'category': 类目轴,适用于离散的类目数据,为该类型时必须通过 data 设置类目数据。
            axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"),  #x轴的坐标轴指示器配置项
        ),
        yaxis_opts=opts.AxisOpts(
            name="诊疗量(万人次)",
            type_="value",
            min_=0,                                                            #设置刻度范围,最小值
            max_=100000,                                                           #最大值
            interval=50000,                                                       # 设置刻度间隔
            axislabel_opts=opts.LabelOpts(formatter="{value} "),
            axistick_opts=opts.AxisTickOpts(is_show=True),                     # 设置轴的刻度线
            splitline_opts=opts.SplitLineOpts(is_show=True),                   # 设置轴的轴线
        ),
    )
)
 

#绘制折线图

line = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="同比增速(%)",
        # 使用的 y 轴的 index,在单个图表实例中存在多个 y 轴的时候有用。
        yaxis_index=1,  #  第一条y轴索引为0,第二条y轴索引为1
        y_axis=[2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 10.3, 13.4, 23.0, 16.5, 12.0, 6.2],
        z = 3,  # z值小的图形会被z值大的图形覆盖
    )
    
)
#使用overlap将柱形图和折线图叠加在同一张图上
#展示图表(渲染图表)
bar.overlap(line).render_notebook()  # 柱形图 层叠 折线图





评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值