【大模型面试每日一题】Day 9:BERT 的 MLM 和 GPT 的 Next Token Prediction 有什么区别?
📌 题目重现 🌟
面试官:预训练任务中,BERT 的 MLM(Masked Language Modeling)和 GPT 的 Next Token Prediction 有什么区别?:
🎯 核心考点
- 预训练任务设计原理:是否理解不同任务对语言模型能力的塑造
- 上下文建模能力判断:能否识别双向/单向建模的限制与优势
- 训练效率权衡意识:对并行化能力、计算资源利用率的认知
- 任务适配能力分析:根据应用场景选择合适模型架构的能力
📖 回答
一、核心区别拆解
维度 | BERT (MLM) | GPT (Next Token Prediction) |
---|---|---|
任务目标 | 恢复被遮盖的随机token | 预测序列中的下一个token |
上下文利用 | 全向注意力(左右上下文) | 因果注意力(仅左侧上下文) |
训练效率 | 高(可并行预测多个mask位置) | 低(需按序列顺序逐步预测) |
token依赖关系 | 被遮盖token相互独立 | 当前token依赖所有历史预测 |
典型应用 | 自然语言理解(NLI、QA) | 文本生成(对话、摘要) |
数据构造示例 | 输入:“猫[MASK]在[MASK]上” → 预测:“猫[跳]在[窗台]上” | 输入:“小狗跑” → 预测:“小狗跑进草丛” |
二、深度对比分析(面试者回答)
1. 上下文建模机制差异
-
BERT 的双向建模
# MLM 示例代码片段 input_ids = tokenizer("BERT的[MASK]任务需要双向关注", return_tensors="pt").input_ids # 随机遮盖 "预" 字位置(实际由动态遮盖策略决定) masked_index = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1] logits = model(input_ids).logits[masked_index] predicted_token = tokenizer.decode(logits.argmax(dim=-1))
- 注意力机制:所有未遮盖token均可参与预测
- 优势:适合实体识别、关系抽取等需全局信息的任务
- 缺陷:预训练与微调阶段的[MASK]标记不一致问题(经典ELECTRA改进点)
-
GPT 的单向生成机制
P ( w 1 : T ) = ∏ t = 1 T P ( w t ∣ w 1 : t − 1 ; θ ) P(w_{1:T}) = \prod_{t=1}^T P(w_t|w_{1:t-1};\theta) P(w1:T)=t=1∏TP(wt∣w1:t−1;θ)- 自回归特性:每个token预测严格依赖历史序列-
- 优势:天然适配文本生成任务,避免[BOS]到[EOS]的连贯性断裂
- 缺陷:左侧上下文长度限制(如GPT-2的1024 token限制)
2. 训练效率与工程实现
指标 | MLM | Next Token |
---|---|---|
并行化能力 | ✅ 可同时预测多个mask位置 | ❌ 必须按时间步展开 |
计算密度 | 高(Transformer层利用率100%) | 低(每步有效计算量递减) |
显存占用 | 与序列长度线性相关 | 与序列长度平方相关(Attention矩阵) |
典型batch size | 4096 tokens | 2048 tokens |
- 硬件适配差异:
MLM更适合GPU/TPU的大矩阵运算特性,而GPT的自回归生成受内存带宽限制明显。NVIDIA测试显示,在A100上MLM训练效率比GPT高约35%。
3. 对下游任务的影响
-
理解类任务对比
- GLUE基准测试: - BERT-base: 84.7 GLUE score - GPT-2: 78.2 GLUE score - 主要差距来源:单向模型在文本蕴含(MNLI)任务中表现较弱
-
生成类任务对比
{ "任务": "故事续写", "BERT-Prefix": { "连贯性": 3.2, "多样性": 2.8 }, "GPT-2": { "连贯性": 4.5, "多样性": 4.1 } }
三、典型错误认知辨析
错误观点 | 正确解释 |
---|---|
“MLM完全利用双向信息” | 实际仅利用被遮盖token的双向上下文,非全序列交互 |
“GPT无法利用右侧信息” | 通过生成式问答(如QA前缀)可间接获取后文信息 |
“MLM训练更快收敛” | 在相同FLOPs预算下,GPT可能因更长序列训练获得更强能力(参考Chinchilla缩放定律) |
⚡️ 工业级技术选型建议
场景 | 推荐模型 | 理由 |
---|---|---|
搜索引擎Query理解 | BERT | 需要精准的语义匹配与实体识别 |
智能客服对话生成 | GPT | 要求连贯的多轮对话与上下文保持 |
法律文档分析 | Span-BERT | MLM扩展支持连续片段预测 |
代码生成 | Codex/GPT | 因果建模符合代码书写逻辑 |
🏭 业界案例参考
1. BERT vs GPT-2 参数对比
指标 | BERT-base | GPT-2 small |
---|---|---|
参数量 | 110M | 117M |
训练数据 | 3.3B words | 40GB text |
预训练任务 | MLM | Next Token |
SQuAD F1 | 92.0 | 89.5 |
Wikitext-103 PPL | 25.7 | 18.3 |
2. T5 混合架构实践
- Google T5证明:编码器采用MLM+解码器采用Next Token的混合模式,在GLUE和生成任务上取得均衡表现
🛠️ 工程实践技巧
1. MLM 遮盖策略优化
# 动态遮盖实现要点
def dynamic_masking(input_ids):
probability_matrix = torch.rand(input_ids.shape)
special_tokens_mask = torch.tensor([x in tokenizer.all_special_ids for x in input_ids])
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
return masked_indices
- 最新研究(SpanBERT)建议:连续片段遮盖比随机token遮盖更优
2. Next Token 的梯度截断技巧
# 长序列训练中的截断反向传播
truncation_length = 512
for i in range(0, total_length, truncation_length):
hidden_states = recompute_activations(model, input_ids[:,i:i+truncation_length], hidden_states)
loss = calc_loss(hidden_states)
loss.backward()
- Meta研究显示:截断长度在256~512时,训练效率与模型质量达到最佳平衡
💡 深度追问 & 回答
Q:如何结合MLM与Next Token的优点?
→ 典型方案:
- BART:对文本进行遮盖+删除噪声处理后,用GPT式解码器重建
- ERNIE-UIE:编码器双向建模,解码器自回归生成统一框架
Q:MLM是否存在上下文利用不充分的场景?
→ 案例:
- 对长距离指代消解(如Winograd Schema)效果有限
- 解决方案:引入Span Masking或DeBERTa的分离注意力机制
Q:Next Token Prediction如何提升训练效率?
→ 优化路径:
- 使用稀疏注意力(如Longformer)减少O(n²)复杂度
- 采用缓存机制加速历史token的表示计算
- Flash Attention优化Attention矩阵计算
📈 总结速记图谱
✅ 一句话总结:MLM通过双向建模强化上下文感知能力,适合需要深度语义理解的任务;Next Token Prediction凭借自回归生成机制,在文本创作和对话系统中展现独特优势,二者的选择本质是对「全局信息利用」与「序列连贯性保持」的权衡。
🎬明日预告:
混合精度训练(Mixed Precision Training)如何加速大模型训练?可能会出现什么问题?如何解决?
(欢迎在评论区留下你的方案,次日公布参考答案)
🚅附录延展
1、难度标识:
• 🌟 基础题(校招必会)
• 🌟🌟 进阶题(社招重点)
• 🌟🌟🌟 专家题(团队负责人级别)
🚀 为什么值得关注?
- 每日进阶:碎片化学习大厂高频考点,30天构建完整知识体系
- 实战代码:每期提供可直接复现的PyTorch代码片段
- 面试预警:同步更新Google/Meta/字节最新面试真题解析
📣 互动时间
💬 你在面试中遇到过哪些「刁钻问题」?评论区留言,下期可能成为选题!
👉 点击主页「关注」,第一时间获取更新提醒
⭐️ 收藏本专栏,面试前速刷冲刺
#大模型面试 #算法工程师 #深度学习 #关注获取更新
👉 关注博主不迷路,大厂Offer快一步!