【大模型面试每日一题】Day 9:BERT 的 MLM 和 GPT 的 Next Token Prediction 有什么区别?

【大模型面试每日一题】Day 9:BERT 的 MLM 和 GPT 的 Next Token Prediction 有什么区别?

📌 题目重现 🌟

面试官:预训练任务中,BERT 的 MLM(Masked Language Modeling)和 GPT 的 Next Token Prediction 有什么区别?

预训练任务
MLM
Next Token Prediction
双向建模
单向建模
随机遮盖
顺序生成

🎯 核心考点

  1. 预训练任务设计原理:是否理解不同任务对语言模型能力的塑造
  2. 上下文建模能力判断:能否识别双向/单向建模的限制与优势
  3. 训练效率权衡意识:对并行化能力、计算资源利用率的认知
  4. 任务适配能力分析:根据应用场景选择合适模型架构的能力

📖 回答

一、核心区别拆解

维度BERT (MLM)GPT (Next Token Prediction)
任务目标恢复被遮盖的随机token预测序列中的下一个token
上下文利用全向注意力(左右上下文)因果注意力(仅左侧上下文)
训练效率高(可并行预测多个mask位置)低(需按序列顺序逐步预测)
token依赖关系被遮盖token相互独立当前token依赖所有历史预测
典型应用自然语言理解(NLI、QA)文本生成(对话、摘要)
数据构造示例输入:“猫[MASK]在[MASK]上” → 预测:“猫[跳]在[窗台]上”输入:“小狗跑” → 预测:“小狗跑进草丛”

二、深度对比分析(面试者回答)

1. 上下文建模机制差异
  • BERT 的双向建模

    # MLM 示例代码片段
    input_ids = tokenizer("BERT的[MASK]任务需要双向关注", return_tensors="pt").input_ids
    # 随机遮盖 "预" 字位置(实际由动态遮盖策略决定)
    masked_index = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
    logits = model(input_ids).logits[masked_index]
    predicted_token = tokenizer.decode(logits.argmax(dim=-1))
    
    • 注意力机制:所有未遮盖token均可参与预测
    • 优势:适合实体识别、关系抽取等需全局信息的任务
    • 缺陷:预训练与微调阶段的[MASK]标记不一致问题(经典ELECTRA改进点)
  • GPT 的单向生成机制
    P ( w 1 : T ) = ∏ t = 1 T P ( w t ∣ w 1 : t − 1 ; θ ) P(w_{1:T}) = \prod_{t=1}^T P(w_t|w_{1:t-1};\theta) P(w1:T)=t=1TP(wtw1:t1;θ)

    • 自回归特性:每个token预测严格依赖历史序列-
    • 优势:天然适配文本生成任务,避免[BOS]到[EOS]的连贯性断裂
    • 缺陷:左侧上下文长度限制(如GPT-2的1024 token限制)
2. 训练效率与工程实现
指标MLMNext Token
并行化能力✅ 可同时预测多个mask位置❌ 必须按时间步展开
计算密度高(Transformer层利用率100%)低(每步有效计算量递减)
显存占用与序列长度线性相关与序列长度平方相关(Attention矩阵)
典型batch size4096 tokens2048 tokens
  • 硬件适配差异
    MLM更适合GPU/TPU的大矩阵运算特性,而GPT的自回归生成受内存带宽限制明显。NVIDIA测试显示,在A100上MLM训练效率比GPT高约35%。
3. 对下游任务的影响
  • 理解类任务对比

    - GLUE基准测试:
      - BERT-base: 84.7 GLUE score
      - GPT-2: 78.2 GLUE score
      - 主要差距来源:单向模型在文本蕴含(MNLI)任务中表现较弱
    
  • 生成类任务对比

    {
      "任务": "故事续写",
      "BERT-Prefix": {
        "连贯性": 3.2,
        "多样性": 2.8
      },
      "GPT-2": {
        "连贯性": 4.5,
        "多样性": 4.1
      }
    }
    

三、典型错误认知辨析

错误观点正确解释
“MLM完全利用双向信息”实际仅利用被遮盖token的双向上下文,非全序列交互
“GPT无法利用右侧信息”通过生成式问答(如QA前缀)可间接获取后文信息
“MLM训练更快收敛”在相同FLOPs预算下,GPT可能因更长序列训练获得更强能力(参考Chinchilla缩放定律)

⚡️ 工业级技术选型建议

场景推荐模型理由
搜索引擎Query理解BERT需要精准的语义匹配与实体识别
智能客服对话生成GPT要求连贯的多轮对话与上下文保持
法律文档分析Span-BERTMLM扩展支持连续片段预测
代码生成Codex/GPT因果建模符合代码书写逻辑

🏭 业界案例参考

1. BERT vs GPT-2 参数对比

指标BERT-baseGPT-2 small
参数量110M117M
训练数据3.3B words40GB text
预训练任务MLMNext Token
SQuAD F192.089.5
Wikitext-103 PPL25.718.3

2. T5 混合架构实践

Encoder
MLM训练
Decoder
Next Token训练
翻译: En-Fr
摘要: CNN-DM
  • Google T5证明:编码器采用MLM+解码器采用Next Token的混合模式,在GLUE和生成任务上取得均衡表现

🛠️ 工程实践技巧

1. MLM 遮盖策略优化

# 动态遮盖实现要点
def dynamic_masking(input_ids):
    probability_matrix = torch.rand(input_ids.shape)
    special_tokens_mask = torch.tensor([x in tokenizer.all_special_ids for x in input_ids])
    probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
    masked_indices = torch.bernoulli(probability_matrix).bool()
    return masked_indices
  • 最新研究(SpanBERT)建议:连续片段遮盖比随机token遮盖更优

2. Next Token 的梯度截断技巧

# 长序列训练中的截断反向传播
truncation_length = 512
for i in range(0, total_length, truncation_length):
    hidden_states = recompute_activations(model, input_ids[:,i:i+truncation_length], hidden_states)
    loss = calc_loss(hidden_states)
    loss.backward()
  • Meta研究显示:截断长度在256~512时,训练效率与模型质量达到最佳平衡

💡 深度追问 & 回答

Q:如何结合MLM与Next Token的优点?

→ 典型方案:

  • BART:对文本进行遮盖+删除噪声处理后,用GPT式解码器重建
  • ERNIE-UIE:编码器双向建模,解码器自回归生成统一框架

Q:MLM是否存在上下文利用不充分的场景?

→ 案例:

  • 对长距离指代消解(如Winograd Schema)效果有限
  • 解决方案:引入Span Masking或DeBERTa的分离注意力机制

Q:Next Token Prediction如何提升训练效率?

→ 优化路径:

  1. 使用稀疏注意力(如Longformer)减少O(n²)复杂度
  2. 采用缓存机制加速历史token的表示计算
  3. Flash Attention优化Attention矩阵计算

📈 总结速记图谱

模型选择
MLM
Next Token
理解任务
生成任务
SpanBERT
Transformer-XL
PALM
RoBERTa

一句话总结:MLM通过双向建模强化上下文感知能力,适合需要深度语义理解的任务;Next Token Prediction凭借自回归生成机制,在文本创作和对话系统中展现独特优势,二者的选择本质是对「全局信息利用」与「序列连贯性保持」的权衡。


🎬明日预告:

混合精度训练(Mixed Precision Training)如何加速大模型训练?可能会出现什么问题?如何解决?

(欢迎在评论区留下你的方案,次日公布参考答案)


🚅附录延展

1、难度标识:

• 🌟 基础题(校招必会)

• 🌟🌟 进阶题(社招重点)

• 🌟🌟🌟 专家题(团队负责人级别)


🚀 为什么值得关注?

  1. 每日进阶:碎片化学习大厂高频考点,30天构建完整知识体系
  2. 实战代码:每期提供可直接复现的PyTorch代码片段
  3. 面试预警:同步更新Google/Meta/字节最新面试真题解析

📣 互动时间

💬 你在面试中遇到过哪些「刁钻问题」?评论区留言,下期可能成为选题!
👉 点击主页「关注」,第一时间获取更新提醒
⭐️ 收藏本专栏,面试前速刷冲刺


#大模型面试 #算法工程师 #深度学习 #关注获取更新

👉 关注博主不迷路,大厂Offer快一步!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值