题目描述
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :
- "1" -> 'A'
- "2" -> 'B'
- ...
- "25" -> 'Y'
- "26" -> 'Z'
然而,在 解码 已编码的消息时,你意识到有许多不同的方式来解码,因为有些编码被包含在其它编码当中("2" 和 "5" 与 "25")。
例如,"11106" 可以映射为: "AAJF" ,将消息分组为 (1, 1, 10, 6) "KJF" ,将消息分组为 (11, 10, 6) 消息不能分组为 (1, 11, 06) ,因为 "06" 不是一个合法编码(只有 "6" 是合法的)。
注意,可能存在无法解码的字符串。 给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。如果没有合法的方式解码整个字符串,返回 0。
解题思路
我们可以使用动态规划来求解这个问题。
思路是定义一个数组 dp
,其中 dp[i]
表示字符串 s
的前 i
个字符的解码方法总数。我们可以从字符串的开头遍历到结尾,逐步构建 dp
数组。
对于每个位置 i
,我们需要考虑两种情况:
-
如果
s[i-1]
是一个有效的单字符编码(即'1'
到'9'
),那么dp[i]
至少和dp[i-1]
一样大,因为我们可以将s[i-1]
单独解码。 -
如果
s[i-2:i]
(即s
的子串从i-2
到i-1
)是一个有效的双字符编码(即'10'
到'26'
),那么dp[i]
还需要加上dp[i-2]
,因为我们可以将s[i-2:i]
作为一个整体来解码。
注意,我们需要对边界条件进行特殊处理:
- 当
i = 0
时,dp[0]
应该是 1,因为空字符串有一种解码方式(即不解码任何东西)。 - 当
i = 1
时,我们需要检查s[0]
是否为'0'
到'9'
之间的数字,如果是,则dp[1] = 1
,否则dp[1] = 0
。
class Solution {
public:
int numDecodings(std::string s) {
if (s[0] == '0') {
return 0; // 如果字符串以0开头,则无法解码
}
std::vector<int> dp(s.size() + 1, 0); // 数组长度+1,dp[0]用于初始化
dp[0] = 1;
dp[1] = 1; // 第一个字符如果不是'0',则有一种解码方式
for (int i = 2; i <= s.size(); i++) {
// 单个字符解码
if (s[i - 1] != '0') {
dp[i] += dp[i - 1];
}
// 两个字符解码
int two_digit = (s[i - 2] - '0') * 10 + (s[i - 1] - '0');
if (two_digit >= 10 && two_digit <= 26) {
dp[i] += dp[i - 2];
}
}
return dp[s.size()]; // 返回整个字符串的解码方法总数
}
};