动态规划-91.解码方法

题目描述

一条包含字母 A-Z 的消息通过以下映射进行了 编码 :

  • "1" -> 'A'
  • "2" -> 'B'
  • ...
  • "25" -> 'Y'
  • "26" -> 'Z'

然而,在 解码 已编码的消息时,你意识到有许多不同的方式来解码,因为有些编码被包含在其它编码当中("2" 和 "5" 与 "25")。

例如,"11106" 可以映射为: "AAJF" ,将消息分组为 (1, 1, 10, 6) "KJF" ,将消息分组为 (11, 10, 6) 消息不能分组为 (1, 11, 06) ,因为 "06" 不是一个合法编码(只有 "6" 是合法的)。

注意,可能存在无法解码的字符串。 给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。如果没有合法的方式解码整个字符串,返回 0。

91. 解码方法 - 力扣(LeetCode)

解题思路

我们可以使用动态规划来求解这个问题。

思路是定义一个数组 dp,其中 dp[i] 表示字符串 s 的前 i 个字符的解码方法总数。我们可以从字符串的开头遍历到结尾,逐步构建 dp 数组。

对于每个位置 i,我们需要考虑两种情况:

  1. 如果 s[i-1] 是一个有效的单字符编码(即 '1' 到 '9'),那么 dp[i] 至少和 dp[i-1] 一样大,因为我们可以将 s[i-1] 单独解码。

  2. 如果 s[i-2:i](即 s 的子串从 i-2 到 i-1)是一个有效的双字符编码(即 '10' 到 '26'),那么 dp[i] 还需要加上 dp[i-2],因为我们可以将 s[i-2:i] 作为一个整体来解码。

注意,我们需要对边界条件进行特殊处理:

  • 当 i = 0 时,dp[0] 应该是 1,因为空字符串有一种解码方式(即不解码任何东西)。
  • 当 i = 1 时,我们需要检查 s[0] 是否为 '0' 到 '9' 之间的数字,如果是,则 dp[1] = 1,否则 dp[1] = 0
class Solution {
public:
    int numDecodings(std::string s) {
        if (s[0] == '0') {
            return 0; // 如果字符串以0开头,则无法解码
        }

        std::vector<int> dp(s.size() + 1, 0); // 数组长度+1,dp[0]用于初始化
        dp[0] = 1; 
        dp[1] = 1; // 第一个字符如果不是'0',则有一种解码方式

        for (int i = 2; i <= s.size(); i++) {
            // 单个字符解码
            if (s[i - 1] != '0') {
                dp[i] += dp[i - 1];
            }

            // 两个字符解码
            int two_digit = (s[i - 2] - '0') * 10 + (s[i - 1] - '0');
            if (two_digit >= 10 && two_digit <= 26) {
                dp[i] += dp[i - 2];
            }
        }

        return dp[s.size()]; // 返回整个字符串的解码方法总数
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值