动态规划-不同的子序列

题目描述

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

示例:

输入:s = "babgbag", t = "bag"

输出:5

解释:

如下所示, 有 5 种可以从 s 中得到 "bag" 的方案。

babgbag

babgbag

babgbag

babgbag

babgbag

为了解决这个问题,我们首先需要理解题目中的关键概念:“子序列”和“出现的个数”。子序列是指从原字符串中删除一些(或者不删除)字符而不改变剩余字符的相对顺序所得到的新字符串。例如,字符串 "abc" 的子序列包括 "a", "b", "c", "ab", "ac", "bc", "abc", ""(空字符串)等。

接下来,我们要计算在字符串 s 的所有子序列中,字符串 t 出现的次数。这可以通过动态规划(Dynamic Programming, DP)来有效地解决。

解题思路

我们可以使用二维数组 dp[i][j] 来表示状态,其中 dp[i][j] 表示 s 的前 i 个字符(即 s[0...i-1])中包含 t 的前 j 个字符(即 t[0...j-1])作为子序列的个数。注意这里的 i 和 j 都是从 1 开始的,方便处理边界情况。

  1. 初始化dp[0][j] = 0 对于所有的 j(因为空字符串不包含任何非空字符串的子序列),dp[i][0] = 1 对于所有的 i(因为任何字符串都包含空字符串作为子序列)。

  2. 状态转移方程

    • 如果 s[i-1] == t[j-1],则有两种情况:
      • 包含当前字符 s[i-1] 作为 t[j-1] 的一部分:dp[i-1][j-1]
      • 不包含当前字符 s[i-1]dp[i-1][j]
        因此,dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
    • 如果 s[i-1] != t[j-1],则只有一种情况:
      • 不包含当前字符 s[i-1]dp[i-1][j]
        因此,dp[i][j] = dp[i-1][j]
  3. 结果dp[n][m],其中 n 和 m 分别是字符串 s 和 t 的长度。

怎样想到这样状态方程的?

一点个人经验,见过的很多2个串的题,大部分都是dp[i][j] 分别表示s串[0...i] 和t串[0...j]怎么怎么样然后都是观察s[i]和t[j]分等或者不等的情况 而且方程通常就是 dp[i-1][j-1] 要么+ 要么 || dp[i-1][j]类似的。

class Solution {
public:
    const int MOD = 1e9 + 7;

    int numDistinct(string s, string t) {
        int n = s.size();
        int m = t.size();
        vector<vector<int>> dp(n+1, vector<int>(m+1, 0));
        //dp[i][j]: t[0~j]子串在 s[0~i]子序列中出现的个数
        for(int i=0;i<n;i++){           
            dp[i][0] = 1;//空字符串是任何字符串的子序列
        }
        
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                if(j>i)
                    continue;//无法在较小的字符串中出现更大的字符串
                if(s[i-1] == t[j-1]){
                    dp[i][j] = (dp[i-1][j-1] + dp[i-1][j])%MOD;
                }
                else{
                    dp[i][j] = dp[i-1][j];
                }
            }
        } 
        return dp[n][m];   
    }
};

最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列。 LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值