补充:约数个数定理

一.约数个数定理

对于任一一个正整数N,根据质因数分解定理其都可拆分为若干素数相乘的形式,则该正整数N 的约数个数为各素因子幂次加一后再相乘。(证明:排列组合问题)

如:72 = 2^3 + 3^2, 则72的约数个数为(3 + 1)*(2 +1)= 12。

二.拓展应用

设f(n)表示n的约数个数。

若A,B互素,C = A*B,则f(C)= f(A)* f(B).

证明:A和B互素意味着二者最大公约数为1,由约数个数定理可知,二者的素因子无交集,因为C = A*B,所以f(C)= f(A)* f(B)。

再如对于三角形数,其通项公式为n*(n + 1) / 2, 可以看出n和n + 1是互素的,且一奇一偶,则:

f = f(n) * f((n + 1) / 2), n为奇数时

f = f(n / 2) * f(n + 1), n为偶数时

如,本题:

其代码实现就可以通过约数个数定理及其推广完成

#include <stdio.h>
#define max_n 100000
int prime[max_n + 5] = {0};
int f[max_n + 5] = {0};//f[i]表示i的约数个数
int cnt[max_n + 5] = {0};//cnt[i]表示i的最小素因子的幂次

void is_prime(){
    for(int i = 2; i < max_n; i++){
        if(!prime[i]) {
            prime[++prime[0]] = i;
            f[i] = 2;  //素数因子个数为2
            cnt[i] = 1; //素数的最小素因子幂次为1
        }
        for(int j = 1; j <= prime[0]; j++){
            if(i * prime[j] >= max_n) break;
            prime[i * prime[j]] = 1;
            if(i % prime[j] == 0) {//i为合数
                f[i * prime[j]] = f[i] / (cnt[i] + 1) * (cnt[i] + 2);
                cnt[i * prime[j]] = cnt[i] + 1;
                break;
            }else {//i是素数
                f[i * prime[j]] = f[i] * f[prime[j]];
                cnt[i * prime[j]] = 1;
            }
        }
    }
    return ;
}
int main(){
    is_prime();
    int n = 1;
    int max = 0;
    while(1){
        if(n % 2 == 0) max = f[n / 2] * f[n + 1];
        else max = f[(n + 1) / 2] * f[n];
        if(max > 500){
            printf("%lld", n * (n + 1) / 2);
            break;
        }
        n++;
    }
    return 0;
}

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值