poj 2992 (约数定理)

POJ 2992 约数定理 Divisors

Your task in this problem is to determine the number of divisors of Cnk. Just for fun – or do you need any special reason for such a useful computation?
Input
The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.
Output
For each instance, output a line containing exactly one integer – the number of distinct divisors of Cnk. For the input instances, this number does not exceed 2 63 - 1.
Sample Input
5 1
6 3
10 4
Sample Output
2
6
16

题意是求出在公式C(n, k)下,这个对应数字的约数个数

这里先补充一下关于约数的个数和个数的和的知识

定理一

n可以分解质因数:n=p1a1×p2a2×p3a3*…*pkak,

由约数定义可知p1^a1 的约数有:p1^0, p1^1, p12…p1a1 ,共(a1+1)个;同理p2^a2 的约数有(a2+1)个…pk^ak的约数有(ak+1)个。

故根据乘法原理:n的约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1)。

例题

例题:正整数378000共有多少个正约数?
解:将378000分解质因数378000=2^4× 3^3× 5^3 ×7^1
由约数个数定理可知378000共有正约数(4+1)×(3+1)×(3+1)×(1+1)=160个。

定理二

对于一个大于1正整数n可以分解质因数:n=p1^a1* p2^a2 *p3^a3 *…*pk^ak,

则由约数个数定理可知n的正约数有(a₁+1)(a₂+1)(a₃+1)…(ak+1)个,

那么n的(a₁+1)(a₂+1)(a₃+1)…(ak+1)个正约数的和为

f(n)=(p1^0+ p1^1 +p1^2 +…p1^ a1)(p2^0 +p2^1 +p2^2 +…p2^ a2)…(pk^0 +pk^1 +pk^2 +…pk^ak)

证明
若n可以分解质因数:n=p1^a1 *p2^a2 *p3^a3 *… *pk^ak,

可知p1^a1的约数有: p1^0, p1^1, p1^ 2…p1^a1…

同理可知,pk^ ak的约数有:pk^ 0, pk^ 1, pk^ 2…pk^ak ;

实际上n的约数是在p1^ a1、p2^ a2、…、pk^ak每一个的约数中分别挑一个相乘得来,

可知共有(a₁+1)(a₂+1)(a₃+1)…(ak+1)种挑法,即约数的个数。

由乘法原理可知它们的和为

f(n)=(p1^ 0+p1^ 1+p1^ 2+…p1^ a1)(p2^ 0+p2^ 1+p2^ 2+…p2^ a2)…(pk^ 0+pk^ 1+pk^ 2+…pk^ak)

例题

例题:正整数360的所有正约数的和是多少?
解:将360分解质因数可得
360=2^ 33^ 25^1
由约数和定理可知,360所有正约数的和为
(2^ 0+2^ 1+2^ 2+2^ 3)×(3^ 0+3^ 1+3^ 2)×(5^ 0+5^1)=(1+2+4+8)(1+3+9)(1+5)=15×13×6=1170
可知360的约数有1、2、3、4、5、6、8、9、10、12、15、18、
20、24、30、36、40、45、60、72、90、120、180、360;则它们的和为
1+2+3+4+5+6+8+9+10+12+15+18+20+24+30+36+40+45+60+72+90+120+180+360=1170

素数筛法模板:

void prime_table(){
	bool vis[maxn];
	int i,j;
	memset(vis,0,sizeof(vis));
	for(i=2;i<=431;i++)
	    if(!vis[i])
	        for(j=i<<1;j<=431;j+=i)      //这里i的大小根据实际需要的大小来定,i<<1是二进制下的操作即十进制下×2操作
	            vis[j]=1;
	m=0;
	for(i=2;i<=431;i++)
	    if(!vis[i])
	        p[m++]=i;                      //p数组下即为所打表下来的素数
}

n!中某个素数存在的个数模板:

long long cal(int n,int pri){
	return (n<pri)?0:(n/pri+cal(n/pri,pri));
}

原理:
例如:20!
1.先求出20以内的素数,(2,3,5,7,11,13,17,19)
2.再求各个素数的阶数
e(2)=[20/2]+[20/4]+[20/8]+[20/16]=18;
e(3)=[20/3]+[20/9]=8;
e(5)=[20/5]=4;

e(19)=[20/19]=1;
所以
20!=2^18* 3^8* 5^4 *…*19^1

解释:
2、4、6、8、10、12、14、16、18、20能被2整除
4、8、12、16、20能被4整除(即被2除一次后还能被2整除)
8、16能被8整除(即被2除两次后还能被2整除)
16能被16整除(即被2除三次后还能被2整除)
这样就得到了2的阶。其它可以依次递推。
第一次是找出可以除以2的数的个数,然后是可以除以4的个数,然后依此类推才能够找到阶乘中2的对应的指数大小

最后根据公式C(n, k) = n! / (n-k)! / k!分别求出每个素数的对应个数然后相乘即为最终的约数的个数

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=431+10;
int p[maxn],m;
void prime_table(){
	bool vis[maxn];
	int i,j;
	memset(vis,0,sizeof(vis));
	for(i=2;i<=431;i++)
	    if(!vis[i])
	        for(j=i<<1;j<=431;j+=i)
	            vis[j]=1;
	m=0;
	for(i=2;i<=431;i++)
	    if(!vis[i])
	        p[m++]=i;
}
long long cal(int n,int pri){
	return (n<pri)?0:(n/pri+cal(n/pri,pri));
}
int main(){
	int n,k,i;
	prime_table();
	while(~scanf("%d %d",&n,&k)){
		long long sum=1;
		for(i=0;i<m;i++)
		    sum*=(cal(n,p[i])-cal(n-k,p[i])-cal(k,p[i])+1);      //这里是分别求出每个素数对应下的指数
		cout<<sum<<endl;
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

协奏曲❤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值