数学--GCD和LCM


提示:以下是本篇文章正文内容,下面案例可供参考

一、提前说明

1.最大公约数(GCD)
2.最小公倍数(LCM)
3.从 Python 3.5 开始,math 模块提供了 math.gcd() 函数,可以直接计算两个数的最大公约数。
4.最小公倍数可以通过公式 LCM(a, b) = abs(a * b) // GCD(a, b) 来计算。

二、实现

1.GCD

(1)快速上手,内置函数

import math
print(math.gcd(12,18))

(2)自己实现,理解原理

欧几里得算法(辗转相除法)
计算最大公约数的高效方法。其原理是基于以下性质:

G C D ( a , b ) = G C D ( b , a % b ) GCD(a,b)=GCD(b,a\%b) GCD(a,b)=GCD(b,a%b)
一直进行到b=0,即GCD(a,0)的形式,返回a,即为最大公约数。

本文作为小白学习笔记,详细过程请自行查阅。

实现代码:

def gcd(x,y):
    while y:
        x,y=y,x%y
    return x
gcd(18,12)

2.LCM

补充:LCM可以转化成GCD问题,通过下列公式求解
L C M ( a , b ) = a b s ( a ∗ b ) / / G C D ( a , b ) LCM(a, b) = abs(a * b) // GCD(a, b) LCM(a,b)=abs(ab)//GCD(a,b)

(1)快速上手,内置函数

import math
gcd=math.gcd(18,12)
lcm = (18*12) // gcd
print(lcm)

(2)自己实现,理解原理

实现代码:

def gcd(x,y):
    while y:
        x,y=y,x%y
    return x

def lcm(x,y):
    result=abs(x*y) // gcd(x,y)
    return result
print(lcm(18,12))

总结

1.GCD: G C D ( a , b ) = G C D ( b , a % b ) GCD(a,b)=GCD(b,a\%b) GCD(a,b)=GCD(b,a%b)
一直进行到b=0,即GCD(a,0)的形式,返回a,即为最大公约数。
2.LCM:(转化成GCD)
L C M ( a , b ) = a b s ( a ∗ b ) / / G C D ( a , b ) LCM(a, b) = abs(a * b) // GCD(a, b) LCM(a,b)=abs(ab)//GCD(a,b)


声明:
本文为本人的学习笔记,旨在记录和分享个人在学习过程中的心得体会和原创代码。由于本人刚入门,对相关知识的理解可能还存在不足之处,文章中难免会有错误或不准确的地方。在此,我诚挚地欢迎各位读者在阅读过程中,如果发现任何问题或有其他建议,随时在评论区或通过其他方式与我交流。我将虚心听取大家的意见,及时修正和改进文章内容,以便更好地学习和成长。感谢大家的关注和支持!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值