[排序]hoare快速排序

今天我们继续来讲排序部分,顾名思义,快速排序是一种特别高效的排序方法,在C语言中qsort函数,底层便是用快排所实现的,快排适用于各个项目中,特别的实用,下面我们就由浅入深的全面刨析快速排序。事先声明,快速排序有不同的版本,今天我们讲的是hoare的版本

目录

快排的定义

hoare快排的具体实现

快排的时间复杂度

优化快速排序

三数取中

小区间优化

相遇位置比key小的问题


快排的定义

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

hoare快排的具体实现

我们先看一下排序的动态图

快排的思想与其他的排序不同,其他排序的基本思想是将最大或者最小的数找出来,放到某一个位置,而在快排中,是将一个数排到有序的位置,然后将其左右分割。

快排会有key,left,right三个变量,key就是当前排序的数的下标,left就是左端,right就是右端

我们先看一下单趟排序的逻辑

注意:左右寻找比key位置大或小的数时,必须从key的另一侧开始移动不然会出现排序错误的问题,这个问题我们之后会具体讲到

那么我们用代码实现一下单趟排序的逻辑

void swap(int* a, int* b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}
void quicksort(int a[],int left,int right)
{
	int key = left;//我们假设key位于left的位置
	int begin = left;
	int end = right; //用begin和end记录left和right的位置
	//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值
	while (begin < end)
	{
		//右边找小
		while (begin<end&&a[end] >= a[key])
		{
			end--;
		}
		//左边找大
		while (begin<end&&a[begin] <= a[key])
		{
			begin++;
		}
		swap(&a[begin], &a[end]);
	}
	swap(&a[begin], &a[key]);
}

既然单趟排序的逻辑我们已经清楚了,那么我们下一步就该进行多次单趟排序的逻辑,这样我们就能完成快排的逻辑

我们这里先用递归的思想进行实现,看下面的逻辑图

以上便是快排多次进行单词排序的逻辑,即快速排序的全部实现逻辑

下面我们用代码进行实现

void quicksort(int a[],int left,int right)
{
	if (left >= right)
	{
		return;
	}
	int key = left;//我们假设key位于left的位置
	int begin = left;
	int end = right; //用begin和end记录left和right的位置
	//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值
	while (begin < end)
	{
		//右边找小
		while (begin<end&&a[end] >= a[key])
		{
			end--;
		}
		//左边找大
		while (begin<end&&a[begin] <= a[key])
		{
			begin++;
		}
		swap(&a[begin], &a[end]);
	}
	swap(&a[begin], &a[key]);
	key = begin;
	//[left,key-1] key [key+1,right]
	quicksort(a, left, key - 1);//左区间递归排序
	quicksort(a, key+1, right);//右区间递归排序
}

这里我们还要理解一下,递归终止条件

left >= right

以上即快速排序的基本实现

快排的时间复杂度

我们都知道判断一个排序效率的方法就是比较其时间复杂度

那么快排的时间复杂度是多少呢?

如果从代码的角度看,这个时间复杂度是非常难以计算的

我们先来看快排的递归层数,我们根据上面的逻辑图,可以大致的发现,快排是将数组类似分为二叉树的结构

因此递归的层数为logN层,而在单趟排序中end和begin从两边开始走直到相遇一共走了N步

从这个角度看快排的时间复杂度为  O(NlogN)

因此快排是和堆排序,希尔排序位于同一赛道的排序算法,都是极其高效的算法

排序十万个数(单位毫秒ms)

排序一百万个数 (单位毫秒ms)

 排序五百万个数 (单位毫秒ms)

可以看到当前的快排,并没有想象中那么快,甚至在数多的情况下和堆排序以及希尔排序,还显得效率较低。
而且在排有序数组的情况下,不要说一百万个数,在十万个数有序数组中,会发生一个大问题

1,效率变低

2.由于递归层次太深,每次递归都要建立新的栈帧,这就会可能导致栈溢出的问题 

我们来分析一下问题,之前在正常情况下,时间复杂度为N*logN的前提是每次都是二分递归,即key位置的数都是接近中间的值,此时当二分递归时,递归的深度就是logN,但如果按上面有序情况下,递归的深度是N,这就是上面问题的来源

因此我们现在的快排还是有明显的缺陷

优化快速排序

那么我们如何解决这个问题呢?

避免有序情况下,效率退化

我们可以改变key的选取,如果我们每次都选取最左侧值为key或者最右侧值为key,就会导致上面递归过深的问题,所以我们不能固定选key。

1.随机选key

随机数选key虽然能够解决问题,但是还是有些不靠谱,毕竟是随机的

2.三数取中

最左边,最右边,中间,选取不是最大的和最小的作key

为了保证代码的逻辑不发生变化,即还从最左端的为key,我们就将三数取中的值与最左边的值进行交换,再执行代码逻辑。

三数取中

三数取中是取大小是中间的值,然后完成最好的情况就是二分的情况,即效率最高的情况

运用分支语句进行两两比较返回中间值,直接放代码,逻辑比较简单,不作解释

int GetMid(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	//left mid right
	if (a[mid] > a[left])
	{
		if (a[mid] < a[right])
			return mid;
		else if (a[left] > a[right])
			return left;
		else
			return right;
	}
	else
	{
		if (a[mid] > a[right])
			return mid;
		else if (a[right] > a[left])
			return left;
		else
			return right;
	}
}

那么我们的快排中需要将交换left和三数取中mid的位置,即加上两行代码,我们其他的逻辑不发生变化

代码如下

void quicksort(int a[],int left,int right)
{
	if (left >= right)
	{
		return;
	}
	//三数取中
	int mid = GetMid(a, left, right);
	swap(&a[mid], &a[left]);  
	int key = left;//我们假设key位于left的位置
	int begin = left;
	int end = right; //用begin和end记录left和right的位置
	//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值
	while (begin < end)
	{
		//右边找小
		while (begin<end&&a[end] >= a[key])
		{
			end--;
		}
		//左边找大
		while (begin<end&&a[begin] <= a[key])
		{
			begin++;
		}
		swap(&a[begin], &a[end]);
	}
	swap(&a[begin], &a[key]);
	key = begin;
	//[left,key-1] key [key+1,right]
	quicksort(a, left, key - 1);
	quicksort(a, key+1, right);

}

在优化后,我们再来比较一下快排的效率

 可以发现,在三数取中后,快排效率也有了优化,而且避免了在有序情况下,递归过深的问题

小区间优化

我们的快排虽然有了优化,但是还有一点缺陷,描述如下图所示

而我们小区间优化,只需要加一个判断语句,对数据个数进行判断,若小于10就用其他的排序方法,大于10就正常递归排序

那么我们选用其他的排序方法要用哪个比较好呢?

我们有插入,堆排序,选择,冒泡,希尔排序,归并排序

我们可以一一进行比较与排除

希尔排序不适用于小数据的排序,堆排序虽然可以,但是我们想一下,没有必要为10个数再单独进行建堆,不然就得不偿失了;归并也是利用递归,没有必要。

那么我们就剩下了冒泡,选择,插入

而在之前的文章中,我们分析过,冒泡和选择排序是远远不如插入排序的效率的

那么我们就选择插入排序

在快排的底层中,小区间优化也是使用的插入排序,这就是插入排序的实际应用

代码如下

	//小区间优化,不再递归分割排序,减少递归次数
	if ((right - left + 1) < 10)
	{
		InsertSort(a + left, right - left - 1);
	}

以上便是优化快排的全部实现

下面放上优化过快排代码

int GetMid(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	//left mid right
	if (a[mid] > a[left])
	{
		if (a[mid] < a[right])
			return mid;
		else if (a[left] > a[right])
			return left;
		else
			return right;
	}
	else
	{
		if (a[mid] > a[right])
			return mid;
		else if (a[right] > a[left])
			return left;
		else
			return right;
	}
}
void swap(int* a, int* b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}
void quicksort(int a[],int left,int right)
{
	if (left >= right)
	{
		return;
	}
	//小区间优化,不再递归分割排序,减少递归次数
	if ((right - left + 1) < 10)
	{
		InsertSort(a + left, right - left - 1);
	}
    else{
	//三数取中
	int mid = GetMid(a, left, right);
	swap(&a[mid], &a[left]);  
	int key = left;//我们假设key位于left的位置
	int begin = left;
	int end = right; //用begin和end记录left和right的位置
	//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值
	while (begin < end)
	{	
		//右边找小
		while (begin<end&&a[end] >= a[key])
		{
			end--;
		}
		//左边找大
		while (begin<end&&a[begin] <= a[key])
		{
			begin++;
		}
		swap(&a[begin], &a[end]);
	}
	swap(&a[begin], &a[key]);
	key = begin;
	//[left,key-1] key [key+1,right]
	quicksort(a, left, key - 1);
	quicksort(a, key+1, right);

}
}
int main()
{
	int a[] = { 6,1,2,7,9,3,4,5,10,8 };
	int sz = sizeof(a) / sizeof(a[0]);
	quicksort(a, 0, sz - 1);
	for (int i = 0; i < sz - 1; i++)
	{
		printf("%d ", a[i]);
	}
	return 0;
}

相遇位置比key小的问题

之前我们遗留了一个小问题,就是怎么保证eft和right相遇位置的值一定比key位置小,这样交换后,会让key的左右两边分为比key大的和比key小的,如果相遇位置比key要大的话,那就让数据排序毁了。

那么如何保证相遇位置比key小呢?

先说结论,就是我们上面所说的

当左边作key时,就让右边先走,可以保证相遇位置比key小

以下即解释:

以上是便是hoare排序相关问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值