今天我们继续来讲排序部分,顾名思义,快速排序是一种特别高效的排序方法,在C语言中qsort函数,底层便是用快排所实现的,快排适用于各个项目中,特别的实用,下面我们就由浅入深的全面刨析快速排序。事先声明,快速排序有不同的版本,今天我们讲的是hoare的版本
目录
快排的定义
快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
hoare快排的具体实现
我们先看一下排序的动态图
快排的思想与其他的排序不同,其他排序的基本思想是将最大或者最小的数找出来,放到某一个位置,而在快排中,是将一个数排到有序的位置,然后将其左右分割。
快排会有key,left,right三个变量,key就是当前排序的数的下标,left就是左端,right就是右端
我们先看一下单趟排序的逻辑
注意:左右寻找比key位置大或小的数时,必须从key的另一侧开始移动不然会出现排序错误的问题,这个问题我们之后会具体讲到
那么我们用代码实现一下单趟排序的逻辑
void swap(int* a, int* b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
void quicksort(int a[],int left,int right)
{
int key = left;//我们假设key位于left的位置
int begin = left;
int end = right; //用begin和end记录left和right的位置
//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值
while (begin < end)
{
//右边找小
while (begin<end&&a[end] >= a[key])
{
end--;
}
//左边找大
while (begin<end&&a[begin] <= a[key])
{
begin++;
}
swap(&a[begin], &a[end]);
}
swap(&a[begin], &a[key]);
}
既然单趟排序的逻辑我们已经清楚了,那么我们下一步就该进行多次单趟排序的逻辑,这样我们就能完成快排的逻辑
我们这里先用递归的思想进行实现,看下面的逻辑图
以上便是快排多次进行单词排序的逻辑,即快速排序的全部实现逻辑
下面我们用代码进行实现
void quicksort(int a[],int left,int right)
{
if (left >= right)
{
return;
}
int key = left;//我们假设key位于left的位置
int begin = left;
int end = right; //用begin和end记录left和right的位置
//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值
while (begin < end)
{
//右边找小
while (begin<end&&a[end] >= a[key])
{
end--;
}
//左边找大
while (begin<end&&a[begin] <= a[key])
{
begin++;
}
swap(&a[begin], &a[end]);
}
swap(&a[begin], &a[key]);
key = begin;
//[left,key-1] key [key+1,right]
quicksort(a, left, key - 1);//左区间递归排序
quicksort(a, key+1, right);//右区间递归排序
}
这里我们还要理解一下,递归终止条件
即left >= right
以上即快速排序的基本实现
快排的时间复杂度
我们都知道判断一个排序效率的方法就是比较其时间复杂度
那么快排的时间复杂度是多少呢?
如果从代码的角度看,这个时间复杂度是非常难以计算的
我们先来看快排的递归层数,我们根据上面的逻辑图,可以大致的发现,快排是将数组类似分为二叉树的结构
因此递归的层数为logN层,而在单趟排序中end和begin从两边开始走直到相遇一共走了N步
从这个角度看快排的时间复杂度为 O(NlogN)
因此快排是和堆排序,希尔排序位于同一赛道的排序算法,都是极其高效的算法
排序十万个数(单位毫秒ms)
排序一百万个数 (单位毫秒ms)
排序五百万个数 (单位毫秒ms)
可以看到当前的快排,并没有想象中那么快,甚至在数多的情况下和堆排序以及希尔排序,还显得效率较低。
而且在排有序数组的情况下,不要说一百万个数,在十万个数有序数组中,会发生一个大问题
1,效率变低
2.由于递归层次太深,每次递归都要建立新的栈帧,这就会可能导致栈溢出的问题
我们来分析一下问题,之前在正常情况下,时间复杂度为N*logN的前提是每次都是二分递归,即key位置的数都是接近中间的值,此时当二分递归时,递归的深度就是logN,但如果按上面有序情况下,递归的深度是N,这就是上面问题的来源
因此我们现在的快排还是有明显的缺陷
优化快速排序
那么我们如何解决这个问题呢?
避免有序情况下,效率退化
我们可以改变key的选取,如果我们每次都选取最左侧值为key或者最右侧值为key,就会导致上面递归过深的问题,所以我们不能固定选key。
1.随机选key
随机数选key虽然能够解决问题,但是还是有些不靠谱,毕竟是随机的
2.三数取中
最左边,最右边,中间,选取不是最大的和最小的作key
为了保证代码的逻辑不发生变化,即还从最左端的为key,我们就将三数取中的值与最左边的值进行交换,再执行代码逻辑。
三数取中
三数取中是取大小是中间的值,然后完成最好的情况就是二分的情况,即效率最高的情况
运用分支语句进行两两比较返回中间值,直接放代码,逻辑比较简单,不作解释
int GetMid(int* a, int left, int right)
{
int mid = (left + right) / 2;
//left mid right
if (a[mid] > a[left])
{
if (a[mid] < a[right])
return mid;
else if (a[left] > a[right])
return left;
else
return right;
}
else
{
if (a[mid] > a[right])
return mid;
else if (a[right] > a[left])
return left;
else
return right;
}
}
那么我们的快排中需要将交换left和三数取中mid的位置,即加上两行代码,我们其他的逻辑不发生变化
代码如下
void quicksort(int a[],int left,int right)
{
if (left >= right)
{
return;
}
//三数取中
int mid = GetMid(a, left, right);
swap(&a[mid], &a[left]);
int key = left;//我们假设key位于left的位置
int begin = left;
int end = right; //用begin和end记录left和right的位置
//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值
while (begin < end)
{
//右边找小
while (begin<end&&a[end] >= a[key])
{
end--;
}
//左边找大
while (begin<end&&a[begin] <= a[key])
{
begin++;
}
swap(&a[begin], &a[end]);
}
swap(&a[begin], &a[key]);
key = begin;
//[left,key-1] key [key+1,right]
quicksort(a, left, key - 1);
quicksort(a, key+1, right);
}
在优化后,我们再来比较一下快排的效率
可以发现,在三数取中后,快排效率也有了优化,而且避免了在有序情况下,递归过深的问题
小区间优化
我们的快排虽然有了优化,但是还有一点缺陷,描述如下图所示
而我们小区间优化,只需要加一个判断语句,对数据个数进行判断,若小于10就用其他的排序方法,大于10就正常递归排序
那么我们选用其他的排序方法要用哪个比较好呢?
我们有插入,堆排序,选择,冒泡,希尔排序,归并排序
我们可以一一进行比较与排除
希尔排序不适用于小数据的排序,堆排序虽然可以,但是我们想一下,没有必要为10个数再单独进行建堆,不然就得不偿失了;归并也是利用递归,没有必要。
那么我们就剩下了冒泡,选择,插入
而在之前的文章中,我们分析过,冒泡和选择排序是远远不如插入排序的效率的
那么我们就选择插入排序
在快排的底层中,小区间优化也是使用的插入排序,这就是插入排序的实际应用
代码如下
//小区间优化,不再递归分割排序,减少递归次数
if ((right - left + 1) < 10)
{
InsertSort(a + left, right - left - 1);
}
以上便是优化快排的全部实现
下面放上优化过快排代码
int GetMid(int* a, int left, int right)
{
int mid = (left + right) / 2;
//left mid right
if (a[mid] > a[left])
{
if (a[mid] < a[right])
return mid;
else if (a[left] > a[right])
return left;
else
return right;
}
else
{
if (a[mid] > a[right])
return mid;
else if (a[right] > a[left])
return left;
else
return right;
}
}
void swap(int* a, int* b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
void quicksort(int a[],int left,int right)
{
if (left >= right)
{
return;
}
//小区间优化,不再递归分割排序,减少递归次数
if ((right - left + 1) < 10)
{
InsertSort(a + left, right - left - 1);
}
else{
//三数取中
int mid = GetMid(a, left, right);
swap(&a[mid], &a[left]);
int key = left;//我们假设key位于left的位置
int begin = left;
int end = right; //用begin和end记录left和right的位置
//我们之后要用left和right的值,进行分割区间递归,所以不能改变其值
while (begin < end)
{
//右边找小
while (begin<end&&a[end] >= a[key])
{
end--;
}
//左边找大
while (begin<end&&a[begin] <= a[key])
{
begin++;
}
swap(&a[begin], &a[end]);
}
swap(&a[begin], &a[key]);
key = begin;
//[left,key-1] key [key+1,right]
quicksort(a, left, key - 1);
quicksort(a, key+1, right);
}
}
int main()
{
int a[] = { 6,1,2,7,9,3,4,5,10,8 };
int sz = sizeof(a) / sizeof(a[0]);
quicksort(a, 0, sz - 1);
for (int i = 0; i < sz - 1; i++)
{
printf("%d ", a[i]);
}
return 0;
}
相遇位置比key小的问题
之前我们遗留了一个小问题,就是怎么保证eft和right相遇位置的值一定比key位置小,这样交换后,会让key的左右两边分为比key大的和比key小的,如果相遇位置比key要大的话,那就让数据排序毁了。
那么如何保证相遇位置比key小呢?
先说结论,就是我们上面所说的
当左边作key时,就让右边先走,可以保证相遇位置比key小
以下即解释:
以上是便是hoare排序相关问题