
损失函数
文章平均质量分 87
KangkangLoveNLP
NLP,大模型,深度学习的学习者
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
从概率到梯度:理解分类问题中交叉熵的优越性
因此,分类问题一般使用交叉熵而不是平方损失函数。原创 2025-03-25 10:57:57 · 503 阅读 · 0 评论 -
MSE vs MAE:选择适合你的模型误差损失函数
因此,选择 MSE 还是 MAE 作为损失函数,需要根据具体问题和数据集的特性来决定。如果数据集中异常值较少,可以使用 MSE;如果数据集中异常值较多,可以使用 MAE。原创 2025-03-25 10:56:12 · 1112 阅读 · 0 评论 -
MSE vs MAE:误差评估的两大选择
因此,选择 MSE 还是 MAE 作为损失函数,需要根据具体问题和数据集的特性来决定。如果数据集中异常值较少,可以使用 MSE;如果数据集中异常值较多,可以使用 MAE。原创 2025-03-24 12:45:16 · 1419 阅读 · 0 评论 -
深度解析:损失函数与代价函数的全貌
损失函数公式适用场景输出类型是否可微最小值特点均方误差(MSE)回归问题连续值是0对较大误差惩罚更大,计算简单,对异常值敏感交叉熵(CE)多分类问题概率分布是0适合概率分布的比较,对小概率值的误差惩罚更大对数损失(Log Loss)二分类问题概率值是0适合二分类概率预测,对小概率值的误差惩罚更大KL散度(KLD)概率分布比较(如生成模型)概率分布是0衡量两个概率分布的差异,对分布的相似性要求更高。原创 2025-03-23 22:11:08 · 1812 阅读 · 0 评论