★ 数据结构 ★ 二叉树(上)

Ciallo~(∠・ω< )⌒☆ ~ 今天,我将继续和大家一起学习数据结构中的二叉树~

目录

一  树概念及结构

1.1树的概念

1.2 树的相关概念

1.3 树的表示

二  二叉树概念及结构

2.1概念

2.2 特殊的二叉树

2.3 二叉树的性质

2.4 二叉树的存储结构

三  二叉树的顺序结构及实现

3.1 二叉树的顺序结构

3.2 堆的实现

3.2.1 堆的基本结构

3.2.2 堆的初始化和销毁

3.2.3 向上调整建堆

3.2.4 向下调整算法

3.2.5 堆的插入和删除

3.2.6 取堆顶与判空

3.3 堆的应用

3.3.1 堆排序

3.3.2 TOP-K问题 

3.4 建堆时间复杂度


一  树概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

  • 有一个特殊的结点,称为根结点,根结点没有前驱结点
  • 除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。
  • 注意:树形结构中,子树之间不能有交集,否则就不是树形结构

1.2 树的相关概念

蓝色为重点~

  • 结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6。
  • 叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等结点为叶结点。
  • 非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等结点为分支结点。
  • 双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点。
  • 孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点。
  • 兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点。
  • 树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6。
  • 结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
  • 树的高度或深度:树中结点的最大层次; 如上图:树的高度为4。
  • 堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点。
  • 结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先。
  • 子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙。
  • 森林:由m(m>0)棵互不相交的树的集合称为森林。

1.3 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法

typedef int DataType;
struct TreeNode 
{
	DataType data; // 结点中的数据域
	struct Node* leftChild; // 第一个孩子结点
	struct Node* rightBrother; // 指向其下一个兄弟结点
};

二  二叉树概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

  • 1. 为
  • 2. 由一个根结点加上两棵别称为左子树和右子树的二叉树组成

2.2 特殊的二叉树

  • 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
  • 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.3 二叉树的性质

  • 1. 若规定根结点的层数为1,则一棵非空二叉树的第 i 层上最多有 2^(i-1) 个结点
  • 2. 若规定根结点的层数为1,则深度为h的二叉树的最大结点数是 2^h-1
  • 3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有n0 =n2 +1 
  • 4. 若规定根结点的层数为1,具有n个结点的满二叉树的深度,h= log2(n+1)。(ps:log2(n+1) 是log以2 为底,n+1为对数)。
  • 5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:

1. 若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点。

2. 若2i+1<n,左孩子序号:2i+1,2i+1 >=n否则无左孩子。

3. 若2i+2<n,左孩子序号:2i+2,2i+2 >=n否则无右孩子。

2.4 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构

顺序存储: 

  • 顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
  • 假设父亲在数组中的下标为 i ,则左孩子在数组中的下标为 2*i+1,右孩子在数组中的下标为 2*i+2。
  • 假设孩子在数组中的下标为 j ,则父亲在数组中的下标为 (j-1)/2 。

链式存储: 

  • 二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链。

三  二叉树的顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

堆的性质:

  • 堆中某个结点的值总是不大于或不小于其父结点的值
  • 堆总是一棵完全二叉树

大堆父亲>=孩子   小堆父亲<=孩子

3.2 堆的实现

3.2.1 堆的基本结构
typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;
3.2.2 堆的初始化和销毁
void HPInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->size = php->capacity = 0;
}
void HPDestory(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}
3.2.3 向上调整建堆

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

void AdjustUp(HPDataType* a, int child) // 小堆,谁小谁当爹
{
	int parent = (child - 1) / 2;// 父子关系算父亲位置
	// while (parent >= 0) 不要用这个条件,parent因为整除的原因永远不会<0
	while (child > 0) // child到底
	{
		if (a[child] < a[parent])
		{
			// 若孩子比父亲小,孩子向上和父亲交换
			Swap(&a[child], &a[parent]);
			// 向上推进算父子位置
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break; // 父亲比孩子小,结束交换
		}
	}
}
void Swap(HPDataType* p1,HPDataType* p2)
{
	HPDataType* tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
3.2.4 向下调整算法

删除堆是删除堆顶的数据,将堆顶的数据和最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

void AdjustDown(HPDataType* a, int n, int parent) // 小堆,谁大谁当儿
{
	int child = parent * 2 + 1;// 默认左孩子
	while(child < n) // 没孩子了
	{
		// 假设法找出小的孩子
		if (child + 1 < n && a[child + 1] < a[child]) //存在右孩子且右孩子小
		{
			++child; // 右小则为右孩子
		}
		if (a[child] < a[parent])
		{
			// 若孩子比父亲小,父亲向下和孩子交换
			Swap(&a[child], &a[parent]);
			// 向下推进算父子位置
			parent = child;
			child = parent * 2 + 1;
		}
		else 
		{
			break; // 孩子比父亲大,结束交换
		}
	}
}
3.2.5 堆的插入和删除
void HPPush(HP* php, HPDataType x)
{
	assert(php);
	if (php->size == php->capacity) // 扩容
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, newcapacity * sizeof(HPDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	// 先插在堆最后
	php->a[php->size] = x;
	php->size++;
	// 调整
	AdjustUp(php->a, php->size - 1);
}
void HPPop(HP* php) // 删除堆顶数据 O(logN)
{
	assert(php);
	assert(php->size > 0);
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}
3.2.6 取堆顶与判空
HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	return php->a[0];
}

bool HPEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

3.3 堆的应用

3.3.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建堆 升序:建大堆 降序:建小堆
  2. 利用堆删除思想来进行排序
// 向上调整堆排 O(N*logN)
void HeapSort(int* a, int n) // 此程序为降序
{
	// 建堆
	// 降序,建小堆
	// 升序,建大堆
	for (int i = 1; i < n; i++)
	{
		AdjustUp(a, i);
	}
	int end = n - 1; // 找末元素
	while (end > 0)
	{
		Swap(&a[0], &a[end]); // 把首末元素交换
		AdjustDown(a, end, 0); // 换上来的元素向下融进堆里
		--end; // 交换下来的首元素不看进堆里
	}
}
// 向下调整堆排 O(N)
void HeapSort2(int* a, int n) // 此程序为降序
{
	// 从最后一个非叶子节点(最后一个节点的父亲)开始往前依次建大堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}
3.3.2 TOP-K问题 

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能 数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  • 1. 用数据集合中前K个元素来建堆

        前k个最大的元素,则建小堆

        前k个最小的元素,则建大堆

  • 2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
void CreateNDate()
{
	// 造数据
	int n = 100;
	srand(time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");
	if (fin == NULL)
	{
		perror("fopen error");
		return;
	}

	for (int i = 0; i < n; ++i)
	{
		int x = (rand() + i) % 10000000;
		fprintf(fin, "%d\n", x);
	}

	fclose(fin);
}
// 建堆 O(K)
// 进堆 O(logK * (N-K))
// 合计 O(N)
void TestHeap()
{
	int k = 0;
	printf("请输入k的值:>");
	scanf("%d", &k);
	// 开一个堆的空间
	int* kminheap = (int*)malloc(sizeof(int) * k);
	if (kminheap == NULL)
	{
		perror("malloc fail");
		return;
	}
	// 从文件中读数据
	const char* file = "data.txt";
	FILE* fout = fopen(file, "r");
	if (fout == NULL)
	{
		perror("fopen error");
		return;
	}
	for (int i = 0; i < k; i++)// 读文件前k个数
	{
		fscanf(fout, "%d", &kminheap[i]);
	}
	// 建一个k个数的小堆
	for (int i = (k - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(kminheap, k, i);
	}
	// 读取剩下N-K个数
	int x = 0;
	int ret = 0;
	while (ret = fscanf(fout, "%d", &x) > 0)// fcanf若为空返回-1
	{
		if (x > kminheap[0])
		{
			kminheap[0] = x;
			AdjustDown(kminheap, k, 0);
		}
	}
	// 打印
	for (int i = 0; i < k; i++)
	{
		printf("%d ", kminheap[i]);
	}
}

3.4 建堆时间复杂度

向上调整算法和向下调整算法的时间复杂度都为O(N)。

建堆的时间复杂度为O(N)。 

~完~

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值